Advertisement

Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner

  • Rachana D. Shah
    Affiliations
    Division of Pediatric Endocrinology, Children's Hospital of Philadelphia, PA, USA
    Search for articles by this author
  • Zheng-Zheng Tang
    Affiliations
    Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA

    Wisconsin Institute for Discovery, Madison, WI, USA
    Search for articles by this author
  • Guanhua Chen
    Affiliations
    Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, WI, USA

    Wisconsin Institute for Discovery, Madison, WI, USA
    Search for articles by this author
  • Shi Huang
    Affiliations
    Department of Biostatistics, Vanderbilt University, Nashville, TN, USA

    Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, TN, USA
    Search for articles by this author
  • Jane F. Ferguson
    Correspondence
    Corresponding author. Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, Preston Research Building Room 354, Nashville, TN 37232, USA.
    Affiliations
    Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, TN, USA

    Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
    Search for articles by this author

      Highlights

      • Consumption of as little as one portion a week of soy foods may have metabolic effects in healthy US individuals.
      • Gut microbiome enterotype modulates associations between dietary soy intake, metabolites, and blood pressure.
      • Specific microbial taxa, including Prevotella and Dialister, have effects on blood pressure that are context-dependent.

      Abstract

      Background and aims

      Consumption of soy foods has been associated with protection against cardiometabolic disease, but the mechanisms are incompletely understood.
      We hypothesized that habitual soy food consumption associates with gut microbiome composition, metabolite production, and the interaction between diet, microbiota and metabolites.

      Methods and results

      We analyzed dietary soy intake, plasma and stool metabolites, and gut microbiome data from two independent cross-sectional samples of healthy US individuals (N = 75 lean or overweight, and N = 29 obese).
      Habitual soy intake associated with several circulating metabolites. There was a significant interaction between soy intake and gut microbiome composition, as defined by gut enterotype, on metabolites in plasma and stool. Soy consumption associated with reduced systolic blood pressure, but only in a subset of individuals defined by their gut microbiome enterotype, suggesting that responsiveness to soy may be dependent on microbiome composition. Soy intake was associated with differences in specific microbial taxa, including two taxa mapping to genus Dialister and Prevotella which appeared to be suppressed by high soy intake We identified context-dependent effects of these taxa, where presence of Prevotella was associated with higher blood pressure and a worse cardiometabolic profile, but only in the absence of Dialister.

      Conclusions

      The gut microbiome is an important intermediate in the interplay between dietary soy intake and systemic metabolism. Consumption of soy foods may shape the microbiome by suppressing specific taxa, and may protect against hypertension only in individuals with soy-responsive microbiota.

      Clinical trials registry

      NCT02010359 at clinicaltrials.gov.

      Keywords

      Abbreviations:

      BMI (body mass index), C (Celsius), DHQ (diet history questionnaire), DNA (deoxyribonucleic acid), FFQ (food frequency questionnaire), PCR (polymerase chain reaction), OTU (operational taxonomic unit)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mohammadkhah A.I.
        • Simpson E.B.
        • Patterson S.G.
        • Ferguson J.F.
        Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease.
        Children. 2018; 5https://doi.org/10.3390/children5120160
        • Ferguson J.F.
        • Allayee H.
        • Gerszten R.E.
        • Ideraabdullah F.
        • Kris-Etherton P.M.
        • Ordovas J.M.
        • et al.
        Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American heart association.
        Circ Cardiovasc Genet. 2016; 9: 291-313https://doi.org/10.1161/HCG.0000000000000030
        • Kau A.L.
        • Ahern P.P.
        • Griffin N.W.
        • Goodman A.L.
        • Gordon J.I.
        Human nutrition, the gut microbiome and the immune system.
        Nature. 2011; 474: 327-336https://doi.org/10.1038/nature10213
        • Wu G.D.
        • Chen J.
        • Hoffmann C.
        • Bittinger K.
        • Chen Y.Y.
        • Keilbaugh S.A.
        • et al.
        Linking long-term dietary patterns with gut microbial enterotypes.
        Science. 2011; 334: 105-108https://doi.org/10.1126/science.1208344
        • Guertin K.A.
        • Moore S.C.
        • Sampson J.N.
        • Huang W.-Y.
        • Xiao Q.
        • Stolzenberg-Solomon R.Z.
        • et al.
        Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations.
        Am J Clin Nutr. 2014; 100: 208-217https://doi.org/10.3945/ajcn.113.078758
        • Mahn K.
        • Borras C.
        • Knock G.A.
        • Taylor P.
        • Khan I.Y.
        • Sugden D.
        • et al.
        Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo.
        FASEB J. 2005; 19: 1755-1757https://doi.org/10.1096/fj.05-4008fje
        • Rivas M.
        • Garay R.P.
        • Escanero J.F.
        • Cia P.
        • Cia P.
        • Alda J.O.
        Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension.
        J Nutr. 2002; 132: 1900-1902https://doi.org/10.1093/jn/132.7.1900
        • Liu X.X.
        • Li S.H.
        • Chen J.Z.
        • Sun K.
        • Wang X.J.
        • Wang X.G.
        • et al.
        Effect of soy isoflavones on blood pressure: a meta-analysis of randomized controlled trials.
        Nutr Metabol Cardiovasc Dis. 2012; 22: 463-470https://doi.org/10.1016/j.numecd.2010.09.006
        • Taku K.
        • Lin N.
        • Cai D.
        • Hu J.
        • Zhao X.
        • Zhang Y.
        • et al.
        Effects of soy isoflavone extract supplements on blood pressure in adult humans: systematic review and meta-analysis of randomized placebo-controlled trials.
        J Hypertens. 2010; 28: 1971-1982https://doi.org/10.1097/HJH.0b013e32833c6edb
        • Kokubo Y.
        • Iso H.
        • Ishihara J.
        • Okada K.
        • Inoue M.
        • Tsugane S.
        • et al.
        Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I.
        Circulation. 2007; 116: 2553-2562https://doi.org/10.1161/CIRCULATIONAHA.106.683755
        • Cheong S.H.
        • Furuhashi K.
        • Ito K.
        • Nagaoka M.
        • Yonezawa T.
        • Miura Y.
        • et al.
        Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice.
        J Nutr Biochem. 2014; 25: 136-143https://doi.org/10.1016/j.jnutbio.2013.09.012
        • Kim E.K.
        • Kwon K.B.
        • Song M.Y.
        • Seo S.W.
        • Park S.J.
        • Ka S.O.
        • et al.
        Genistein protects pancreatic beta cells against cytokine-mediated toxicity.
        Mol Cell Endocrinol. 2007; 278: 18-28https://doi.org/10.1016/j.mce.2007.08.003
        • Ramdath D.D.
        • Padhi E.M.T.
        • Sarfaraz S.
        • Renwick S.
        • Duncan A.M.
        Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease.
        Nutrients. 2017; 9https://doi.org/10.3390/nu9040324
      1. USDA Food Composition Databases n.d. https://ndb.nal.usda.gov/ndb/(accessed September 24, 2019).

        • Rowland I.R.
        • Wiseman H.
        • Sanders T.A.
        • Adlercreutz H.
        • Bowey E.A.
        Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora.
        Nutr Canc. 2000; 36: 27-32https://doi.org/10.1207/S15327914NC3601_5
        • Bowey E.
        • Adlercreutz H.
        • Rowland I.
        Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats.
        Food Chem Toxicol: An International Journal Published for the British Industrial Biological Research Association. 2003; 41: 631-636
        • Nakatsu C.H.
        • Armstrong A.
        • Clavijo A.P.
        • Martin B.R.
        • Barnes S.
        • Weaver C.M.
        Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption.
        PloS One. 2014; 9e108924https://doi.org/10.1371/journal.pone.0108924
        • Mjj Ronis
        Effects of soy containing diet and isoflavones on cytochrome P450 enzyme expression and activity.
        Drug Metab Rev. 2016; 48: 331-341https://doi.org/10.1080/03602532.2016.1206562
        • Ferguson J.F.
        • Ryan M.F.
        • Gibney E.R.
        • Brennan L.
        • Roche H.M.
        • Reilly M.P.
        Dietary isoflavone intake is associated with evoked responses to inflammatory cardiometabolic stimuli and improved glucose homeostasis in healthy volunteers.
        Nutr Metabol Cardiovasc Dis. 2014; 24: 996-1003https://doi.org/10.1016/j.numecd.2014.03.010
        • Tang Z.-Z.
        • Chen G.
        • Hong Q.
        • Huang S.
        • Smith H.M.
        • Shah R.D.
        • et al.
        Multi-omic analysis of the microbiome and metabolome in healthy subjects reveals microbiome-dependent relationships between diet and metabolites.
        Front Genet. 2019; 10https://doi.org/10.3389/fgene.2019.00454
        • Ferguson J.F.
        • Aden L.A.
        • Barbaro N.R.
        • Van Beusecum J.P.
        • Xiao L.
        • Simmons A.J.
        • et al.
        High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension.
        JCI Insight. 2019; 5https://doi.org/10.1172/jci.insight.126241
        • Subar A.F.
        • Thompson F.E.
        • Kipnis V.
        • Midthune D.
        • Hurwitz P.
        • McNutt S.
        • et al.
        Comparative validation of the block, Willett, and National cancer Institute food frequency questionnaires : the eating at America's table study.
        Am J Epidemiol. 2001; 154: 1089-1099
        • Xia J.
        • Wishart D.S.
        Metabolomic data processing, analysis, and interpretation using MetaboAnalyst.
        Curr Protoc Bioinformatics. 2011; ([Chapter 14]:Unit 14 10)https://doi.org/10.1002/0471250953.bi1410s34
        • Caporaso J.G.
        • Lauber C.L.
        • Walters W.A.
        • Berg-Lyons D.
        • Huntley J.
        • Fierer N.
        • et al.
        Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.
        ISME J. 2012; 6: 1621-1624https://doi.org/10.1038/ismej.2012.8
        • Schloss P.D.
        • Westcott S.L.
        • Ryabin T.
        • Hall J.R.
        • Hartmann M.
        • Hollister E.B.
        • et al.
        Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
        Appl Environ Microbiol. 2009; 75: 7537-7541https://doi.org/10.1128/AEM.01541-09
        • Kaufman L.
        • Rousseeuw P.J.
        Clustering by means of medoids.
        in: Dodge Y. Statistical data analysis based on the L1 norm and related methods. Elsevier, Amsterdam1987: 405-416
        • Dhariwal A.
        • Chong J.
        • Habib S.
        • King I.L.
        • Agellon L.B.
        • Xia J.
        MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data.
        Nucleic Acids Res. 2017; 45: W180-W188https://doi.org/10.1093/nar/gkx295
        • Miles F.L.
        • Lloren J.I.C.
        • Haddad E.
        • Jaceldo-Siegl K.
        • Knutsen S.
        • Sabate J.
        • et al.
        Plasma, urine, and Adipose tissue biomarkers of dietary intake differ between vegetarian and non-vegetarian diet groups in the adventist health study-2.
        J Nutr. 2019; 149: 667-675https://doi.org/10.1093/jn/nxy292
        • Sun J.
        • Dou J.-T.
        • Wang X.-L.
        • Yang G.-Q.
        • Lü Z.-H.
        • Zheng H.
        • et al.
        Correlation between 1,5-anhydroglucitol and glycemic excursions in type 2 diabetic patients.
        Chin Med J. 2011; 124: 3641-3645
        • Roy C.
        • Tremblay P.-Y.
        • Anassour-Laouan-Sidi E.
        • Lucas M.
        • Forest J.-C.
        • Giguère Y.
        • et al.
        Risk of gestational diabetes mellitus in relation to plasma concentrations of amino acids and acylcarnitines: a nested case-control study.
        Diabetes Res Clin Pract. 2018; 140: 183-190https://doi.org/10.1016/j.diabres.2018.03.058
        • Oxenkrug G.F.
        Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes.
        Mol Neurobiol. 2015; 52: 805-810https://doi.org/10.1007/s12035-015-9232-0
        • Favennec M.
        • Hennart B.
        • Verbanck M.
        • Pigeyre M.
        • Caiazzo R.
        • Raverdy V.
        • et al.
        Post-bariatric surgery changes in quinolinic and xanthurenic acid concentrations are associated with glucose homeostasis.
        PloS One. 2016; 11e0158051https://doi.org/10.1371/journal.pone.0158051
        • Setchell K.D.R.
        • Clerici C.
        Equol: pharmacokinetics and biological actions.
        J Nutr. 2010; 140: 1363S-1368Shttps://doi.org/10.3945/jn.109.119784
        • Hazim S.
        • Curtis P.J.
        • Schär M.Y.
        • Ostertag L.M.
        • Kay C.D.
        • Minihane A.-M.
        • et al.
        Acute benefits of the microbial-derived isoflavone metabolite equol on arterial stiffness in men prospectively recruited according to equol producer phenotype: a double-blind randomized controlled trial.
        Am J Clin Nutr. 2016; 103: 694-702https://doi.org/10.3945/ajcn.115.125690
        • Chakraborty S.
        • Galla S.
        • Cheng X.
        • Yeo J.-Y.
        • Mell B.
        • Singh V.
        • et al.
        Salt-responsive metabolite, β-hydroxybutyrate, attenuates hypertension.
        Cell Rep. 2018; 25 (e4): 677-689https://doi.org/10.1016/j.celrep.2018.09.058
        • Dudzik D.
        • Zorawski M.
        • Skotnicki M.
        • Zarzycki W.
        • García A.
        • Angulo S.
        • et al.
        GC-MS based Gestational Diabetes Mellitus longitudinal study: identification of 2-and 3-hydroxybutyrate as potential prognostic biomarkers.
        J Pharmaceut Biomed Anal. 2017; 144: 90-98https://doi.org/10.1016/j.jpba.2017.02.056
        • Wijayatunga N.N.
        • Sams V.G.
        • Dawson J.A.
        • Mancini M.L.
        • Mancini G.J.
        • Moustaid-Moussa N.
        Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity.
        Diabetes Metab Res Rev. 2018; 34: e3045https://doi.org/10.1002/dmrr.3045
        • Yu D.
        • Moore S.C.
        • Matthews C.E.
        • Xiang Y.-B.
        • Zhang X.
        • Gao Y.-T.
        • et al.
        Plasma metabolomic profiles in association with type 2 diabetes risk and prevalence in Chinese adults.
        Metabolomics. 2016; 12https://doi.org/10.1007/s11306-015-0890-8
        • Nevalainen J.
        • Sairanen M.
        • Appelblom H.
        • Gissler M.
        • Timonen S.
        • Ryynänen M.
        First-trimester maternal serum amino acids and acylcarnitines are significant predictors of gestational diabetes.
        Rev Diabet Stud. 2016; 13: 236-245https://doi.org/10.1900/RDS.2016.13.236
        • Alves A.
        • Bassot A.
        • Bulteau A.-L.
        • Pirola L.
        • Morio B.
        Glycine metabolism and its alterations in obesity and metabolic diseases.
        Nutrients. 2019; 11https://doi.org/10.3390/nu11061356
        • Di Camillo B.
        • Eduati F.
        • Nair S.K.
        • Avogaro A.
        • Toffolo G.M.
        Leucine modulates dynamic phosphorylation events in insulin signaling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells.
        BMC Cell Biol. 2014; 15: 9https://doi.org/10.1186/1471-2121-15-9
        • Yu Q.
        • Tai Y.-Y.
        • Tang Y.
        • Zhao J.
        • Negi V.
        • Culley M.K.
        • et al.
        BOLA (BolA family member 3) deficiency controls endothelial metabolism and Glycine homeostasis in pulmonary hypertension.
        Circulation. 2019; 139: 2238-2255https://doi.org/10.1161/CIRCULATIONAHA.118.035889
        • Wang H.
        • Wang X.
        • Qi D.
        • Sun M.
        • Hou Q.
        • Li Y.
        • et al.
        Establishment of the circadian metabolic phenotype strategy in spontaneously hypertensive rats: a dynamic metabolomics study.
        J Transl Med. 2020; 18: 38https://doi.org/10.1186/s12967-020-02222-1
        • Pundir J.
        • Charles D.
        • Sabatini L.
        • Hiam D.
        • Jitpiriyaroj S.
        • Teede H.
        • et al.
        Overview of systematic reviews of non-pharmacological interventions in women with polycystic ovary syndrome.
        Hum Reprod Update. 2019; 25: 243-256https://doi.org/10.1093/humupd/dmy045
        • Crawford T.J.
        • Crowther C.A.
        • Alsweiler J.
        • Brown J.
        Antenatal dietary supplementation with myo-inositol in women during pregnancy for preventing gestational diabetes.
        Cochrane Database Syst Rev. 2015; CD011507https://doi.org/10.1002/14651858.CD011507.pub2
        • Li W.
        • Ruan W.
        • Peng Y.
        • Wang D.
        Soy and the risk of type 2 diabetes mellitus: a systematic review and meta-analysis of observational studies.
        Diabetes Res Clin Pract. 2018; 137: 190-199https://doi.org/10.1016/j.diabres.2018.01.010
        • Abildgaard A.
        • Elfving B.
        • Hokland M.
        • Wegener G.
        • Lund S.
        The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour.
        Arch Physiol Biochem. 2018; 124: 306-312https://doi.org/10.1080/13813455.2017.1398262
        • Pulakazhi Venu V.K.
        • Saifeddine M.
        • Mihara K.
        • Tsai Y.-C.
        • Nieves K.
        • Alston L.
        • et al.
        The pregnane X receptor and its microbiota-derived ligand indole 3-propionic acid regulate endothelium-dependent vasodilation.
        Am J Physiol Endocrinol Metab. 2019; 317: E350-E361https://doi.org/10.1152/ajpendo.00572.2018
        • Zhu X.
        • Shi J.
        • Li H.
        Liquiritigenin attenuates high glucose-induced mesangial matrix accumulation, oxidative stress, and inflammation by suppression of the NF-κB and NLRP3 inflammasome pathways.
        Biomed Pharmacother. 2018; 106: 976-982https://doi.org/10.1016/j.biopha.2018.07.045
        • Carnovali M.
        • Luzi L.
        • Terruzzi I.
        • Banfi G.
        • Mariotti M.
        Liquiritigenin reduces blood glucose level and bone adverse effects in hyperglycemic adult zebrafish.
        Nutrients. 2019; 11https://doi.org/10.3390/nu11051042
        • Kim K.U.
        • Lee S.-J.
        • Lee I.
        Development of an improved menopausal symptom-alleviating licorice (Glycyrrhiza uralensis) by biotransformation using monascus albidulus.
        J Microbiol Biotechnol. 2020; 30: 178-186https://doi.org/10.4014/jmb.1909.09037
        • Kou T.
        • Wang Q.
        • Cai J.
        • Song J.
        • Du B.
        • Zhao K.
        • et al.
        Effect of soybean protein on blood pressure in postmenopausal women: a meta-analysis of randomized controlled trials.
        Food Funct. 2017; 8: 2663-2671https://doi.org/10.1039/c6fo01845a
        • Wu J.
        • Ding X.
        Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats.
        J Agric Food Chem. 2001; 49: 501-506https://doi.org/10.1021/jf000695n
        • Cross T.-W.L.
        • Zidon T.M.
        • Welly R.J.
        • Park Y.-M.
        • Britton S.L.
        • Koch L.G.
        • et al.
        Soy improves cardiometabolic health and cecal microbiota in female low-fit rats.
        Sci Rep. 2017; 7: 9261https://doi.org/10.1038/s41598-017-08965-0
        • Fernandez-Raudales D.
        • Hoeflinger J.L.
        • Bringe N.A.
        • Cox S.B.
        • Dowd S.E.
        • Miller M.J.
        • et al.
        Consumption of different soymilk formulations differentially affects the gut microbiomes of overweight and obese men.
        Gut Microb. 2012; 3: 490-500https://doi.org/10.4161/gmic.21578
        • Naderpoor N.
        • Mousa A.
        • Gomez-Arango L.F.
        • Barrett H.L.
        • Dekker Nitert M.
        • de Courten B.
        Faecal microbiota are related to insulin sensitivity and secretion in overweight or obese adults.
        J Clin Med. 2019; 8https://doi.org/10.3390/jcm8040452