Systematic Reviews and Meta-analyses| Volume 30, ISSUE 12, P2133-2145, November 27, 2020

Download started.


The effects of Canola oil on cardiovascular risk factors: A systematic review and meta-analysis with dose-response analysis of controlled clinical trials

  • Author Footnotes
    1 These authors have equally contributed to this manuscript.
    Mojgan Amiri
    1 These authors have equally contributed to this manuscript.
    Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

    Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

    Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
    Search for articles by this author
  • Author Footnotes
    1 These authors have equally contributed to this manuscript.
    Hamidreza Raeisi-Dehkordi
    1 These authors have equally contributed to this manuscript.
    Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

    Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

    Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
    Search for articles by this author
  • Nizal Sarrafzadegan
    Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran

    School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
    Search for articles by this author
  • Scott C. Forbes
    Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
    Search for articles by this author
  • Amin Salehi-Abargouei
    Corresponding author. Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, PO Code, 8915173160, Iran. Fax: +98 35 38209119.
    Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

    Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
    Search for articles by this author
  • Author Footnotes
    1 These authors have equally contributed to this manuscript.


      • Canola oil (CO) potentially improves cardiovascular risk factors.
      • No dose–response relationship between CO and cardiometabolic markers has been systematically evaluated, yet.
      • Forty-two controlled clinical trials were included in the systematic review.
      • CO improved several cardiometabolic markers compared with saturated fat, sunflower, and olive oil.
      • The greatest benefits occurred when ~15% of the total energy intake was consumed as CO.


      Background and aims

      Canola oil (CO) is a plant-based oil with the potential to improve several cardiometabolic risk factors. We systematically reviewed controlled clinical trials investigating the effects of CO on lipid profiles, apo-lipoproteins, glycemic indices, inflammation, and blood pressure compared to other edible oils in adults.

      Methods and results

      Online databases were searched for articles up to January 2020. Forty-two articles met the inclusion criteria. CO significantly reduced total cholesterol (TC, −0.27 mmol/l, n = 37), low-density lipoprotein cholesterol (LDL-C, −0.23 mmol/l, n = 35), LDL-C to high-density lipoprotein cholesterol ratio (LDL/HDL, −0.21, n = 10), TC/HDL (−0.13, n = 15), apolipoprotein B (Apo B, −0.03 g/l, n = 14), and Apo B/Apo A-1 (−0.02, n = 6) compared to other edible oils (P < 0.05). Compared to olive oil, CO decreased TC (−0.23 mmol/l, n = 9), LDL-C (−0.17 mmol/l, n = 9), LDL/HDL (−0.39, n = 2), and triglycerides in VLDL (VLDL-TG, −0.10 mmol/l, n = 2) (P < 0.05). Compared to sunflower oil, CO improved LDL-C (−0.14 mmol/l, n = 11), and LDL/HDL (−0.30, n = 3) (P < 0.05). In comparison with saturated fats, CO improved TC (−0.59 mmol/l, n = 11), TG (−0.08 mmol/l, n = 11), LDL-C (−0.49 mmol/l, n = 10), TC/HDL (−0.29, n = 5), and Apo B (−0.09 g/l, n = 4) (P < 0.05). Based on the nonlinear dose–response curve, replacing CO with ~15% of total caloric intake provided the greatest benefits.


      CO significantly improved different cardiometabolic risk factors compared to other edible oils. Further well-designed clinical trials are warranted to confirm the dose–response associations.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Benjamin E.J.
        • Muntner P.
        • Alonso A.
        • Bittencourt M.S.
        • Callaway C.W.
        • Carson A.P.
        • et al.
        Heart disease and stroke statistics-2019 update: a report from the American heart association.
        Circulation. 2019; 139: e56-e528
        • Hansson G.K.
        Inflammation, atherosclerosis, and coronary artery disease.
        N Engl J Med. 2005; 352: 1685-1695
        • Peng S.
        • Shen T.
        • Liu J.
        • Tomlinson B.
        • Sun H.
        • Chen X.
        • et al.
        Uncontrolled hypertension increases with age in an older community-dwelling Chinese population in Shanghai.
        Aging Dis. 2017; 8: 558-569
        • Ornish D.
        • Brown S.E.
        • Billings J.
        • Scherwitz L.
        • Armstrong W.T.
        • Ports T.A.
        • et al.
        Can lifestyle changes reverse coronary heart disease?: the Lifestyle Heart Trial.
        Lancet. 1990; 336: 129-133
        • Artinian N.T.
        • Fletcher G.F.
        • Mozaffarian D.
        • Kris-Etherton P.
        • Van Horn L.
        • Lichtenstein A.H.
        • et al.
        Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults. A scientific statement from the American Heart Association.
        Circulation. 2010; 122: 406-441
        • Kentner A.C.
        • Grace S.L.
        Between mind and heart: sex-based cognitive bias in cardiovascular disease treatment.
        Front Neuroendocrinol. 2017; 45: 18-24
        • NCo Ministers
        Nordic nutrition recommendations 2012: integrating nutrition and physical activity.
        Nordic Council of Ministers, 2014
        • Sacks F.M.
        • Lichtenstein A.H.
        • Wu J.H.
        • Appel L.J.
        • Creager M.A.
        • Kris-Etherton P.M.
        • et al.
        Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association.
        Circulation. 2017; 136: e1-e23
        • Ascherio A.
        • Rimm E.B.
        • Giovannucci E.L.
        • Spiegelman D.
        • Meir S.
        • Willett W.C.
        Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States.
        BMJ. 1996; 313: 84-90
        • Hu F.B.
        • Stampfer M.J.
        • Manson J.E.
        • Rimm E.
        • Colditz G.A.
        • Rosner B.A.
        • et al.
        Dietary fat intake and the risk of coronary heart disease in women.
        N Engl J Med. 1997; 337: 1491-1499
        • Kris-Etherton P.M.
        Monounsaturated fatty acids and risk of cardiovascular disease.
        Circulation. 1999; 100: 1253-1258
        • Dreon D.M.
        • Vranizan K.M.
        • Krauss R.M.
        • Austin M.A.
        • Wood P.D.
        The effects of polyunsaturated fat vs monounsaturated fat on plasma lipoproteins.
        J Am Med Assoc. 1990; 263: 2462-2466
        • Grundy S.M.
        Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol.
        N Engl J Med. 1986; 314: 745-748
        • Kris-Etherton P.M.
        • Pearson T.A.
        • Wan Y.
        • Hargrove R.L.
        • Moriarty K.
        • Fishell V.
        • et al.
        High–monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations.
        Am J Clin Nutr. 1999; 70: 1009-1015
        • Berry E.M.
        • Eisenberg S.
        • Haratz D.
        • Friedlander Y.
        • Norman Y.
        • Kaufmann N.A.
        • et al.
        Effects of diets rich in monounsaturated fatty acids on plasma lipoproteins--the Jerusalem Nutrition Study: high MUFAs vs high PUFAs.
        Am J Clin Nutr. 1991; 53: 899-907
        • Rasmussen O.W.
        • Thomsen C.
        • Hansen K.W.
        • Vesterlund M.
        • Winther E.
        • Hermansen K.
        Effects on blood pressure, glucose, and lipid levels of high-monounsaturated fat diet compared with a high-carbohydrate diet in NIDDM subjects.
        Diabetes Care. 1993; 16: 1565-1571
        • Qian F.
        • Korat A.A.
        • Malik V.
        • Hu F.B.
        Metabolic effects of monounsaturated fatty acid–enriched diets compared with carbohydrate or polyunsaturated fatty acid–enriched diets in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials.
        Diabetes Care. 2016; 39: 1448-1457
        • Brehm B.J.
        • Lattin B.L.
        • Summer S.S.
        • Boback J.A.
        • Gilchrist G.M.
        • Jandacek R.J.
        • et al.
        One-year comparison of a high–monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes.
        Diabetes Care. 2009; 32: 215-220
        • Pan A.
        • Chen M.
        • Chowdhury R.
        • Wu J.H.
        • Sun Q.
        • Campos H.
        • et al.
        α-Linolenic acid and risk of cardiovascular disease: a systematic review and meta-analysis.
        Am J Clin Nutr. 2012; 96: 1262-1273
        • De Lorgeril M.
        • Renaud S.
        • Salen P.
        • Monjaud I.
        • Mamelle N.
        • Martin J.
        • et al.
        Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease.
        Lancet. 1994; 343: 1454-1459
        • Johnson G.H.
        • Keast D.R.
        • Kris-Etherton P.M.
        Dietary modeling shows that the substitution of canola oil for fats commonly used in the United States would increase compliance with dietary recommendations for fatty acids.
        J Am Diet Assoc. 2007; 107: 1726-1734
        • Brenna J.T.
        • Salem N.
        • Sinclair A.J.
        • Cunnane S.C.
        α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans.
        Prostagl Leukot Essent Fat Acids. 2009; 80: 85-91
        • Valsta L.M.
        • Jauhiainen M.
        • Aro A.
        • Katan M.B.
        • Mutanen M.
        Effects of a monounsaturated rapeseed oil and a polyunsaturated sunflower oil diet on lipoprotein levels in humans.
        Arterioscler Thromb Vasc Biol. 1992; 12: 50-57
        • Wardlaw G.M.
        • Snook J.T.
        • Lin M.C.
        • Puangco M.A.
        • Kwon J.S.
        Serum lipid and apolipoprotein concentrations in healthy men on diets enriched in either canola oil or safflower oil.
        Am J Clin Nutr. 1991; 54: 104-110
        • Gustafsson I.B.
        • Vessby B.
        • Öhrvall M.
        • Nydahl M.
        A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects.
        Am J Clin Nutr. 1994; 59: 667-674
        • Nydahl M.
        • Gustafsson I.B.
        • Öhrvall M.
        • Vessby B.
        Similar effects of rapeseed oil (canola oil) and olive oil in A lipid-lowering diet for patients with hyperlipoproteinemia.
        J Am Coll Nutr. 1995; 14: 643-651
        • Kruse M.
        • von Loeffelholz C.
        • Hoffmann D.
        • Pohlmann A.
        • Seltmann A.C.
        • Osterhoff M.
        • et al.
        Dietary rapeseed/canola-oil supplementation reduces serum lipids and liver enzymes and alters postprandial inflammatory responses in adipose tissue compared to olive-oil supplementation in obese men.
        Mol Nutr Food Res. 2015; 59: 507-519
        • Nigam P.
        • Bhatt S.
        • Misra A.
        • Chadha D.S.
        • Vaidya M.
        • Dasgupta J.
        • et al.
        Effect of a 6-month intervention with cooking oils containing a high concentration of monounsaturated fatty acids (olive and canola oils) compared with control oil in male asian indians with nonalcoholic fatty liver disease.
        Diabetes Technol Therapeut. 2014; 16: 255-261
        • Iggman D.
        • Gustafsson I.B.
        • Berglund L.
        • Vessby B.
        • Marckmann P.
        • Risérus U.
        Replacing dairy fat with rapeseed oil causes rapid improvement of hyperlipidaemia: a randomized controlled study.
        J Intern Med. 2011; 270: 356-364
        • Chisholm A.
        • Mc Auley K.
        • Mann J.
        • Williams S.
        • Skeaff M.
        Cholesterol lowering effects of nuts compared with a Canola oil enriched cereal of similar fat composition.
        Nutr Metabol Cardiovasc Dis. 2005; 15: 284-292
        • McDonald B.E.
        • Gerrard J.M.
        • Bruce V.M.
        • Corner E.J.
        Comparison of the effect of canola oil and sunflower oil on plasma lipids and lipoproteins and on in vivo thromboxane A2 and prostacyclin production in healthy young men.
        Am J Clin Nutr. 1989; 50: 1382-1388
        • Seppanen-Laakso T.
        • Vanhanen H.
        • Laakso I.
        • Kohtamdki H.
        • Viikari J.
        Replacement of margarine on bread by rapeseed and olive oils: effects on plasma fatty acid composition and serum cholesterol.
        Ann Nutr Metabol. 1993; 37: 161-174
        • Noroozi M.
        • Zavoshy R.
        • Hashemi H.J.
        The effects of low-calorie diet with canola oil on blood lipids in hyperlipidemic patients.
        J Food Nutr Res. 2009; 48: 178-182
        • Vega-López S.
        • Ausman L.M.
        • Jalbert S.M.
        • Erkkilä A.T.
        • Lichtenstein A.H.
        Palm and partially hydrogenated soybean oils adversely alter lipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects.
        Am J Clin Nutr. 2006; 84: 54-62
        • Jenkins D.J.A.
        • Kendall C.W.C.
        • Vuksan V.
        • Faulkner D.
        • Augustin L.S.A.
        • Mitchell S.
        • et al.
        Effect of lowering the glycemic load with canola oil on glycemic control and cardiovascular risk factors: a randomized controlled trial.
        Diabetes Care. 2014; 37: 1806-1814
        • Jones P.J.H.
        • Senanayake V.K.
        • Pu S.
        • Jenkins D.J.A.
        • Connelly P.W.
        • Lamarche B.
        • et al.
        Dha-enriched high-oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial.
        Am J Clin Nutr. 2014; 100: 88-97
        • Baxheinrich A.
        • Stratmann B.
        • Lee-Barkey Y.H.
        • Tschoepe D.
        • Wahrburg U.
        Effects of a rapeseed oil-enriched hypoenergetic diet with a high content of alpha-linolenic acid on body weight and cardiovascular risk profile in patients with the metabolic syndrome.
        Br J Nutr. 2012; 108: 682-691
        • Junker R.
        • Kratz M.
        • Neufeld M.
        • Erren M.
        • Nofer J.R.
        • Schulte H.
        • et al.
        Effects of diets containing olive oil, sunflower oil, or rapeseed oil on the hemostatic system.
        Thromb Haemostasis. 2001; 85: 280-286
        • Saedi S.
        • Noroozi M.
        • Khosrotabar N.
        • Mazandarani S.
        • Ghadrdoost B.
        How canola and sunflower oils affect lipid profile and anthropometric parameters of participants with dyslipidemia.
        Med J Islam Repub Iran. 2017; 31: 5
        • Salar A.
        • Faghih S.
        • Pishdad G.R.
        Rice bran oil and canola oil improve blood lipids compared to sunflower oil in women with type 2 diabetes: a randomized, single-blind, controlled trial.
        JClin Lipidol. 2016; 10: 299-305
        • Stricker H.
        • Duchini F.
        • Facchini M.
        • Mombelli G.
        Canola oil decreases cholesterol and improves endothelial function in patients with peripheral arterial occlusive disease - a pilot study.
        Artery Res. 2008; 2: 67-73
        • Lopes D.C.F.
        • Silvestre M.P.C.
        • Silva V.D.M.
        • Moreira T.G.
        • Garcia E.S.
        • Silva M.R.
        Dietary supplementation of conjugated linoleic acid, added to a milk drink, in women.
        Asian JSci Res. 2013; 6: 679-690
        • Chan J.K.
        • Bruce V.M.
        • McDonald B.E.
        Dietary α-linolenic acid is as effective as oleic acid and linoleic acid in lowering blood cholesterol in normolipidemic men.
        Am J Clin Nutr. 1991; 53: 1230-1234
        • Albert B.B.
        • Derraik J.G.B.
        • Brennan C.M.
        • Biggs J.B.
        • Garg M.L.
        • Cameron-Smith D.
        • et al.
        Supplementation with a blend of krill and salmon oil is associated with increased metabolic risk in overweight men.
        Am J Clin Nutr. 2015; 102: 49-57
        • Karvonen H.M.
        • Aro A.
        • Tapola N.S.
        • Salminen I.
        • Uusitupa M.I.J.
        • Sarkkinen E.S.
        Effect of α-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects.
        Metab Clin Exp. 2002; 51: 1253-1260
        • Ghobadi S.
        • Hassanzadeh-Rostami Z.
        • Mohammadian F.
        • Zare M.
        • Faghih S.
        Effects of canola oil consumption on lipid profile: a systematic review and meta-analysis of randomized controlled clinical trials.
        J Am Coll Nutr. 2018; : 1-12
        • Moher D.
        • Shamseer L.
        • Clarke M.
        • Ghersi D.
        • Liberati A.
        • Petticrew M.
        • et al.
        Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement.
        Syst Rev. 2015; 4: 1
        • Mackay D.S.
        • Jew S.
        • Jones P.J.
        Best practices for design and implementation of human clinical trials studying dietary oils.
        Prog Lipid Res. 2017; 65: 1-11
        • Higgins J.P.
        • Green S.
        Cochrane handbook for systematic reviews of interventions.
        John Wiley & Sons, 2011
        • Lichtenstein A.H.
        • Ausman L.M.
        • Carrasco W.
        • Jenner J.L.
        • Gualtieri L.J.
        • Goldin B.R.
        • et al.
        Effects of canola, corn, and olive oils on fasting and postprandial plasma lipoproteins in humans as part of a national cholesterol education program step 2 diet.
        Arterioscler Thromb Vasc Biol. 1993; 13: 1533-1542
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Contr Clin Trials. 1986; 7: 177-188
        • Higgins J.P.
        • Thompson S.G.
        Quantifying heterogeneity in a meta-analysis.
        Stat Med. 2002; 21: 1539-1558
        • Egger M.
        • Davey Smith G.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Duval S.
        • Tweedie R.
        Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis.
        Biometrics. 2000; 56: 455-463
        • Duval S.
        • Tweedie R.
        A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis.
        J Am Stat Assoc. 2000; 95: 89-98
        • Egger M.
        • Davey-Smith G.
        • Altman D.
        Systematic reviews in health care: meta-analysis in context.
        John Wiley & Sons, 2008
        • Orsini N.
        DRMETA: stata module for dose-response meta-analysis.
        • Herrmann W.
        • Biermann J.
        • Kostner G.M.
        Comparison of effects of N-3 to N-6 fatty acids on serum levels of Lp(a) in patients with coronary artery disease.
        Clin Lab. 1997; 43: 1149-1152
        • Karvonen H.M.
        • Tapola N.S.
        • Uusitupa M.I.
        • Sarkkinen E.S.
        The effect of vegetable oil-based cheese on serum total and lipoprotein lipids.
        Eur J Clin Nutr. 2002; 56: 1094-1101
        • Kratz M.
        • Von Eckardstein A.
        • Fobker M.
        • Buyken A.
        • Posny N.
        • Schulte H.
        • et al.
        The impact of dietary fat composition on serum leptin concentrations in healthy nonobese men and women.
        J Clin Endocrinol Metabol. 2002; 87: 5008-5014
        • Sarkkinena E.S.
        • Uusitupaa M.I.
        • Pietinen P.
        • Aro A.
        • Ahola I.
        • Penttilä I.
        • et al.
        Long-term effects of three fat-modified diets in hypercholesterolemic subjects.
        Atherosclerosis. 1994; 105: 9-23
        • Södergren E.
        • Gustafsson I.B.
        • Basu S.
        • Nourooz-Zadeh J.
        • Nälsén C.
        • Turpeinen A.
        • et al.
        A diet containing rapeseed oil-based fats does not increase lipid peroxidation in humans when compared to a diet rich in saturated fatty acids.
        Eur J Clin Nutr. 2001; 55: 922-931
        • Sundram K.
        • Hayes K.C.
        • Siru O.H.
        Both dietary 18:2 and 16:0 may be required to improve the serum LDL/HDL cholesterol ratio in normocholesterolemic men.
        J Nutr Biochem. 1995; 6: 179-187
        • Azemati M.
        • Shakerhosseini R.
        • Hekmatdos A.
        • Alavi-Majd H.
        • Hedayati M.
        • Houshiarrad A.
        • et al.
        Comparison of the effects of canola oil versus sunflower oil on the biochemical markers of bone metabolism in osteoporosis.
        J Res Med Sci. 2012; 17: 1137-1143
        • Baril-Gravel L.
        • Labonté M.E.
        • Couture P.
        • Vohl M.C.
        • Charest A.
        • Guay V.
        • et al.
        Docosahexaenoic acid-enriched canola oil increases adiponectin concentrations: a randomized crossover controlled intervention trial.
        Nutr Metabol Cardiovasc Dis. 2015; 25: 52-59
        • Hodson L.
        • Skeaff C.M.
        • Chisholm W.A.
        The effect of replacing dietary saturated fat with polyunsaturated or monounsaturated fat on plasma lipids in free-living young adults.
        Eur J Clin Nutr. 2001; 55: 908-915
        • Karvonen H.M.
        • Aro A.
        • Tapola N.S.
        • Salminen I.
        • Uusitupa M.I.J.
        • Sarkkinen E.S.
        Effect of α-linolenic acid-rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects.
        Metab Clin Exp. 2002; 51: 1253-1260
        • Larsen L.F.
        • Jespersen J.
        • Marckmann P.
        Are olive oil diets antithrombotic? Diets enriched with olive, rapeseed, or sunflower oil affect postprandial factor VII differently.
        Am J Clin Nutr. 1999; 70: 976-982
        • Lichtenstein A.H.
        • Ausman L.M.
        • Carrasco W.
        • Gualtieri L.J.
        • Jenner J.L.
        • Ordovas J.M.
        • et al.
        Rice bran oil consumption and plasma lipid levels in moderately hypercholesterolemic humans.
        Arterioscler Thromb Vasc Biol. 1994; 14: 549-556
        • Linko E.
        Vegetable oils and serum cholesterol; short-term experiments with rapeseed and sunflower seed oils.
        Acta Med Scand. 1957; 159: 475-488
        • McKenney J.M.
        • Proctor J.D.
        • Wright J.T.
        • Kolinski R.J.
        • Elswick R.K.
        • Coaker J.S.
        The effect of supplemental dietary fat on plasma cholesterol levels in lovastatin-treated hypercholesterolemic patients.
        Pharmacotherapy. 1995; 15: 565-572
        • Öhrvall M.
        • Gustafsson I.B.
        • Vessby B.
        The alpha and gamma tocopherol levels in serum are influenced by the dietary fat quality.
        J Hum Nutr Diet. 2001; 14: 63-68
        • Pedersen A.
        • Baumstark M.W.
        • Marckmann P.
        • Gylling H.
        • Sandström B.
        An olive oil-rich diet results in higher concentrations of LDL cholesterol and a higher number of LDL subfraction particles than rapeseed oil and sunflower oil diets.
        J Lipid Res. 2000; 41: 1901-1911
        • Seppanen-Laakso T.
        • Vanhanen H.
        • Laaksol I.
        • Kohtamaki H.
        • Viikari J.
        Replacement of butter on bread by rapeseed oil and rapeseed oil containing margarine: effects on plasma fatty acid composition and serum cholesterol.
        Br J Nutr. 1992; 68: 639-654
        • Truswell A.S.
        • Choudhury N.
        • Roberts D.C.K.
        Double blind comparison of plasma lipids in healthy subjects eating potato crisps fried in palmolein or canola oil.
        Nutr Res. 1992; 12: S43-S52
        • Uusitupa M.
        • Schwab U.
        • Mäkimattila S.
        • Karhapää P.
        • Sarkkinen E.
        • Maliranta H.
        • et al.
        Effects of two high-fat diets with different fatty acid compositions on glucose and lipid metabolism in healthy young women 1-3.
        Am J Clin Nutr. 1994; 59: 1310-1316
        • Atefi M.
        • Pishdad G.R.
        • Faghih S.
        Canola oil and olive oil impact on lipid profile and blood pressure in women with type 2 diabetes: a randomized, controlled trial.
        Prog Nutr. 2018; 20: 102-109
        • Atefi M.
        • Pishdad G.R.
        • Faghih S.
        The effects of canola and olive oils on insulin resistance, inflammation and oxidative stress in women with type 2 diabetes: a randomized and controlled trial.
        J Diabetes Metab Disord. 2018; : 1-7
        • Baudet M.
        • Jacotot B.
        Dietary fats and lecithin-cholesterol acyltransferase activity in healthy humans.
        Ann Nutr Metabol. 1988; 32: 352-359
        • Bowen K.J.
        • Kris-Etherton P.M.
        • West S.G.
        • Fleming J.A.
        • Connelly P.W.
        • Lamarche B.
        • et al.
        Diets enriched with conventional or high-oleic acid canola oils lower atherogenic lipids and lipoproteins compared to a diet with a western fatty acid profile in adults with central adiposity.
        J Nutr. 2019; 149: 471-478
        • Ackman R.
        Canola fatty acids—an ideal mixture for health, nutrition, and food use. Canola and Rapeseed.
        Springer, 1990: 81-98
        • Vlahakis C.
        • Hazebroek J.
        Phytosterol accumulation in canola, sunflower, and soybean oils: effects of genetics, planting location, and temperature.
        J Am Oil Chem Soc. 2000; 77: 49-53
        • Simopoulos A.P.
        The importance of the ratio of omega-6/omega-3 essential fatty acids.
        Biomed Pharmacother. 2002; 56: 365-379
        • Mozaffarian D.
        • Ascherio A.
        • Hu F.B.
        • Stampfer M.J.
        • Willett W.C.
        • Siscovick D.S.
        • et al.
        Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men.
        Circulation. 2005; 111: 157-164
        • Galli C.
        • Agradi E.
        • Petroni A.
        • Tremoli E.
        Differential effects of dietary fatty acids on the accumulation of arachidonic acid and its metabolic conversion through the cyclooxygenase and lipoxygenase in platelets and vascular tissue.
        Lipids. 1981; 16: 165-172
        • DeFilippis A.P.
        • Sperling L.S.
        Understanding omega-3's.
        Am Heart J. 2006; 151: 564-570
        • Kris-Etherton P.M.
        • Harris W.S.
        • Appel L.J.
        Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease.
        Circulation. 2002; 106: 2747-2757
        • Mozaffarian D.
        • Wu J.H.
        Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events.
        J Am Coll Cardiol. 2011; 58: 2047-2067
        • Simopoulos A.P.
        Omega-6/omega-3 essential fatty acid ratio and chronic diseases.
        Food Rev Int. 2004; 20: 77-90
        • Simopoulos A.P.
        Omega-3 fatty acids in inflammation and autoimmune diseases.
        J Am Coll Nutr. 2002; 21: 495-505
        • Hibbeln J.R.
        • Nieminen L.R.
        • Blasbalg T.L.
        • Riggs J.A.
        • Lands W.E.
        Healthy intakes of n− 3 and n–6 fatty acids: estimations considering worldwide diversity.
        Am J Clin Nutr. 2006; 83: 1483S-1493S
        • Bergouignan A.
        • Momken I.
        • Schoeller D.A.
        • Simon C.
        • Blanc S.
        Metabolic fate of saturated and monounsaturated dietary fats: the Mediterranean diet revisited from epidemiological evidence to cellular mechanisms.
        Prog Lipid Res. 2009; 48: 128-147
        • Robinson J.G.
        • Stone N.J.
        Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids.
        Am J Cardiol. 2006; 98: 39-49
        • Mori T.A.
        Omega-3 fatty acids and hypertension in humans.
        Clin Exp Pharmacol Physiol. 2006; 33: 842-846
        • Schwingshackl L.
        • Hoffmann G.
        Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies.
        Lipids Health Dis. 2014; 13: 154
        • Gül M.K.
        • Şeker M.
        Comparative analysis of phytosterol components from rapeseed (Brassica napus L.) and olive (Olea europaea L.) varieties.
        Eur J Lipid Sci Technol. 2006; 108: 759-765
        • Ikeda I.
        • Tanaka K.
        • Sugano M.
        • Vahouny G.
        • Gallo L.
        Discrimination between cholesterol and sitosterol for absorption in rats.
        J Lipid Res. 1988; 29: 1583-1591
        • Child P.
        • Kuksis A.
        Uptake of 7-dehydro derivatives of cholesterol, campesterol, and beta-sitosterol by rat erythrocytes, jejunal villus cells, and brush border membranes.
        JLR (J Lipid Res). 1983; 24: 552-565
        • Laraki L.
        • Pelletier X.
        • Mourot J.
        • Debry G.
        Effects of dietary phytosterols on liver lipids and lipid metabolism enzymes.
        Ann Nutr Metabol. 1993; 37: 129-133
        • Ostlund Jr., R.E.
        • Racette S.B.
        • Stenson W.F.
        Effects of trace components of dietary fat on cholesterol metabolism: phytosterols, oxysterols, and squalene.
        Nutr Rev. 2002; 60: 349-359
        • Miettinen T.A.
        • Vanhanen H.
        Dietary-sitostanol related to absorption, synthesis and serum level of cholesterol in different apolipoprotein E phenotypes.
        Atherosclerosis. 1994; 105: 217-226
        • Vanhanen H.T.
        • Blomqvist S.
        • Ehnholm C.
        • Hyvönen M.
        • Jauhiainen M.
        • Torstila I.
        • et al.
        Serum cholesterol, cholesterol precursors, and plant sterols in hypercholesterolemic subjects with different apoE phenotypes during dietary sitostanol ester treatment.
        J Lipid Res. 1993; 34: 1535-1544
        • Sialvera T.
        • Pounis G.
        • Koutelidakis A.
        • Richter D.
        • Yfanti G.
        • Kapsokefalou M.
        • et al.
        Phytosterols supplementation decreases plasma small and dense LDL levels in metabolic syndrome patients on a westernized type diet.
        Nutr Metabol Cardiovasc Dis. 2012; 22: 843-848
        • Krauss R.M.
        Atherogenic lipoprotein phenotype and diet-gene interactions.
        J Nutr. 2001; 131: 340S-343S
        • Sniderman A.D.
        • Williams K.
        • Contois J.H.
        • Monroe H.M.
        • McQueen M.J.
        • de Graaf J.
        • et al.
        A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk.
        Circ Cardiovasc Qual Outcomes. 2011; 110 (CIRCOUTCOMES): 959247
        • Fernandez M.L.
        • Webb D.
        The LDL to HDL cholesterol ratio as a valuable tool to evaluate coronary heart disease risk.
        J Am Coll Nutr. 2008; 27: 1-5
        • Kinosian B.
        • Glick H.
        • Preiss L.
        • Puder K.L.
        Cholesterol and coronary heart disease: predicting risks in men by changes in levels and ratios.
        J Invest Med: the official publication of the American Federation for Clinical Research. 1995; 43: 443-450
        • Kinosian B.
        • Glick H.
        • Garland G.
        Cholesterol and coronary heart disease: predicting risks by levels and ratios.
        Ann Intern Med. 1994; 121: 641-647
        • Mensink R.P.
        • Zock P.L.
        • Kester A.D.
        • Katan M.B.
        Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials.
        Am J Clin Nutr. 2003; 77: 1146-1155
        • Lin L.
        • Allemekinders H.
        • Dansby A.
        • Campbell L.
        • Durance-Tod S.
        • Berger A.
        • et al.
        Evidence of health benefits of canola oil.
        Nutr Rev. 2013; 71: 370-385
        • Humphries K.
        • Izadnegadar M.
        • Sedlak T.
        • Saw J.
        • Johnston N.
        • Schenck-Gustafsson K.
        • et al.
        Sex differences in cardiovascular disease–impact on care and outcomes.
        Front Neuroendocrinol. 2017; 46: 46