Advertisement

Effect of Atkins versus a low-fat diet on gut microbiota, and cardiometabolic markers in obese women following an energy-restricted diet: Randomized, crossover trial

      Highlights

      • There is controversy about the effects of the Atkins diet on cardiometabolic markers.
      • The Atkins diet, based on vegetable oils, alters gut microbiota composition in obese people.
      • Composition of gut microbiota is associated with the serum antioxidant status in obesity.
      • More clinical trials are needed to clear these novel findings.

      Abstract

      Background and aims

      There is controversy about effects of the Atkins diet on cardiometabolic markers in previous studies. No study compared effects of Atkins versus a low-fat diet on gut microbiota in obese women during a weight-loss program up to date.

      Methods and results

      A 6-week, randomized, crossover trial was conducted. Twenty-four healthy women with obesity (BMI≥30 kg/m2) were randomly assigned to receive the Atkins (55%, 25%, and 20% of total daily calories from fat, protein, and carbohydrates), or low-fat (20%, 15%, and 65% of total daily calories from fat, protein, and carbohydrates) diets while following a weight-loss program. Vegetable oils were used as the main source of dietary fat. Dietary groups were switched after two weeks of washout period with a weight maintenance low-fat diet. The effects of the two diets did not differ for the most endpoints. However, Gut Actinobacteria residency and serum total antioxidant capacity significantly increased in the Akins diet group compared with the low-fat one (p = 0.02 and p = 0.04). Adjusting for all parameters, gut Actinobacteria residency 1.48- and 2.5-folds decreased the serum LDL.C/HDL.C ratio and non-HDL.C levels (95%CI: 3.1, −0.22; p = 0.03 and −0.07, −0.002; p = 0.04), respectively. Decrease in gut Proteobacteria residency showed a significant reduction in serum total oxidant status (95%CI: 7.4, −0.07; p = 0.04).

      Conclusions

      The Atkins diet, based on vegetable oils, alters gut microbiota composition, atherogenic and antioxidant parameters.

      Registration number for clinical trial

      IRCT20200929048876N3.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Franks P.W.
        • McCarthy M.I.
        Exposing the exposures responsible for type 2 diabetes and obesity.
        Science. 2016; 354: 69-73
        • Sommer I.
        • Griebler U.
        • Mahlknecht P.
        • Thaler K.
        • Bouskill K.
        • Gartlehner G.
        • et al.
        Socioeconomic inequalities in non-communicable diseases and their risk factors: an overview of systematic reviews.
        BMC Publ Health. 2015; 15: 914
        • Gebreab S.Z.
        • Vandeleur C.L.
        • Rudaz D.
        • Strippoli M.F.
        • Gholam-Rezaee M.
        • Castelao E.
        • et al.
        Psychosocial stress over the lifespan, psychological factors, and cardiometabolic risk in the community.
        Psychosom Med. 2018; 80: 628-639
        • Virani S.S.
        • Alonso A.
        • Benjamin E.J.
        • Bittencourt M.S.
        • Callaway C.W.
        • Carson A.P.
        • et al.
        Heart disease and stroke statistics-2020 update: a report from the American Heart Association.
        Circulation. 2020; 141: e139-e596
        • Komaroff A.L.
        The microbiome and risk for atherosclerosis.
        JAMA. 2018; 319: 2381-2382
        • Shen X.
        • Li L.
        • Sun Z.
        • Zang G.
        • Zhang L.
        • Shao C.
        • et al.
        Gut microbiota and atherosclerosis—focusing on the plaque stability.
        Front. Cardiovasc. Med. 2021; 8: 668532
        • Crovesy L.
        • Masterson D.
        • Rosado E.L.
        Profile of the gut microbiota of adults with obesity: a systematic review.
        Eur J Clin Nutr. 2020; 74: 1251-1262
        • Marseglia L.
        • Manti S.
        • D'Angelo G.
        • Nicotera A.
        • Parisi E.
        • Di Rosa G.
        • et al.
        Oxidative stress in obesity: a critical component in human diseases.
        Int J Mol Sci. 2014; 16: 378-400
        • Stienstra R.
        • Tack C.J.
        • Kanneganti T.D.
        • Joosten L.A.
        • Netea M.G.
        The inflammasome puts obesity in the danger zone.
        Cell Metabol. 2012; 15: 10-18
        • Gyuraszova M.
        • Kovalcikova A.
        • Gardlik R.
        Association between oxidative status and the composition of intestinal microbiota along the gastrointestinal tract.
        Med Hypotheses. 2017; 103: 81-85
        • Bibbò S.
        • Ianiro G.
        • Giorgio V.
        • Scaldaferri F.
        • Masucci L.
        • Gasbarrini A.
        • et al.
        The role of diet on gut microbiota composition.
        Eur Rev Med Pharmacol Sci. 2016; 20: 4742-4749
        • David L.
        • Maurice C.
        • Carmody R.
        • Gootenberg D.B.
        • E Button J.E.
        • Wolfe B.E.
        • et al.
        Diet rapidly and reproducibly alters the human gut microbiome.
        Nature. 2014; 505: 559-563
        • Morrison D.J.
        • Preston T.
        Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.
        Gut Microb. 2016; 7: 189-200
        • Ference B.A.
        • Ginsberg H.N.
        • Graham I.
        • Ray K.K.
        • Packard C.J.
        • Bruckert E.
        • et al.
        Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel.
        Eur Heart J. 2017; 38: 2459-2472
        • Le Roy T.
        • Lécuyer E.
        • Chassaing B.
        • Rhimi M.
        • Lhomme M.
        • Boudebbouze S.
        • et al.
        The intestinal microbiota regulates host cholesterol homeostasis.
        BMC Biol. 2019; 17: 94
        • Freire R.
        Scientific evidence of diets for weight loss: different macronutrient composition, intermittent fasting, and popular diets.
        Nutrition. 2020; 69 (110549)
        • Yu D.
        • Xie L.
        • Chen W.
        • Qin J.
        • Zhang J.
        • Lei M.
        • et al.
        Dynamics of the gut bacteria and fungi accompanying low-carbohydrate diet-induced weight loss in overweight and obese adults.
        Front Nutr. 2022; 9: 846378
        • Ukhanova M.
        • Wang X.
        • Baer D.J.
        • Novotny J.A.
        • Fredborg M.
        • Mai V.
        Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.
        Br J Nutr. 2014; 111: 2146-2152
        • Ahmed S.A.
        • Elhefnawy A.M.
        • Azouz H.G.
        • Roshdy Y.S.
        • Ashry M.H.
        • Ibrahim A.E.
        • et al.
        Study of the gut microbiome profile in children with autism spectrum disorder: a single tertiary hospital experience.
        J Mol Neurosci. 2020; 70: 887-896
        • Ceron J.J.
        • Tecles F.
        • Tvarijonaviciute A.
        Serum paraoxonase 1 (PON1) measurement: an update.
        BMC Vet Res. 2014; 10: 74
        • Adnan M.T.
        • Amin M.N.
        • Uddin M.G.
        • Hussain M.S.
        • Sarwar M.S.
        • Hossain M.K.
        • et al.
        Increased concentration of serum MDA, decreased antioxidants and altered trace elements and macro-minerals are linked to obesity among Bangladeshi population.
        Diabetes Metabol Syndr. 2019; 13: 933-938
        • Koutnikova H.
        • Genser B.
        • Monteiro-Sepulveda M.
        • Faurie J.-M.
        • Rizkalla S.
        • Schrezenmeir J.
        • et al.
        Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomized controlled trials.
        BMJ open. 2019; 9e017995
        • Zhou D.
        • Pan Q.
        • Shen F.
        • Cao H.X.
        • Ding W.J.
        • Chen Y.W.
        • et al.
        Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota.
        Sci Rep. 2017; 7: 1529
        • Caesar R.
        • Tremaroli V.
        • Kovatcheva-Datchary P.
        • Cani Patrice D.
        • Bäckhed F.
        Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling.
        Cell Metabol. 2015; 22: 658-668
        • Mansoor N.
        • Vinknes K.
        • Veierød M.
        • Retterstøl K.
        Effects of low-carbohydrate diets v. low-fat diets on body weight and cardiovascular risk factors: a meta-analysis of randomized controlled trials.
        Br J Nutr. 2016; 115: 466-479
        • Ramakrishna B.S.
        Role of the gut microbiota in human nutrition and metabolism.
        J Gastroenterol Hepatol. 2013; 28: 9-17
        • Arumugam M.
        • Raes J.
        • Pelletier E.
        • Le Paslier D.
        • Yamada T.
        • Mende D.R.
        • et al.
        Enterotypes of the human gut microbiome.
        Nature. 2011; 473: 174-180
        • Feinman R.D.
        • Pogozelski W.K.
        • Astrup A.
        • Bernstein R.K.
        • Fine E.J.
        • Westman E.C.
        • et al.
        Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base.
        Nutrition. 2015; 31: 1-13
        • Centers for Disease Control and Prevention (CDC)
        Trends in intake of energy and macronutrients--United States, 1971-2000.
        MMWR Morb Mortal Wkly Rep. 2004; 53: 80-82
        • Goldenberg J.Z.
        • Day A.
        • Brinkworth G.D.
        • Sato J.
        • Yamada S.
        • Jönsson T.
        • et al.
        Efficacy and safety of low and very low carbohydrate diets for type 2 diabetes remission: systematic review and meta-analysis of published and unpublished randomized trial data.
        BMJ. 2021; 372: m4743
        • Castaner O.
        • Goday A.
        • Park Y.M.
        • Lee S.H.
        • Magkos F.
        • Shiow S.T.E.
        • et al.
        The gut microbiome profile in obesity: a systematic review.
        Internet J Endocrinol. 2018; 2018: 4095789
        • Irimie A.I.
        • Braicu C.
        • Pasca S.
        • Magdo L.
        • Gulei D.
        • Cojocneanu R.
        • et al.
        Role of key micronutrients from nutrigenetic and nutrigenomic perspectives in cancer prevention.
        Medicina. 2019; 55: 283
        • Wang H.
        • Wei C.X.
        • Min L.
        • Zhu L.Y.
        Good or bad: gut bacteria in human health and diseases.
        Biotechnol Biotechnol Equip. 2018; 32: 1075-1080
        • Hjorth M.F.
        • Blaedel T.
        • Bendtsen L.Q.
        • Lorenzen J.K.
        • Holm J.B.
        • Kiilerich P.
        • et al.
        Prevotella-to Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis.
        Int J Obes. 2019; 43: 149-157
        • Cotillard A.
        • Kennedy S.P.
        • Kong L.C.
        • Prifti E.
        • Pons N.
        • Le Chatelier E.
        • et al.
        Dietary intervention impact on gut microbial gene richness.
        Nature. 2013; 500: 585-588
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • Prifti E.
        • Hildebrand F.
        • Falony G.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013; 500: 541-546
        • Jackman J.A.
        • Yoon B.K.
        • Li D.
        • Cho N.J.
        Nanotechnology formulations for antibacterial free fatty acids and monoglycerides.
        Molecules. 2016; 21: 305
        • Shilling M.
        • Matt L.
        • Rubin E.
        • Visitacion M.P.
        • Haller N.A.
        • Grey S.F.
        • et al.
        Antimicrobial effects of virgin coconut oil and its mediumchain fatty acids on Clostridium difficile.
        J Med Food. 2013; 16: 1079-1085
        • Ecker J.
        • Liebisch G.
        • Patsch W.
        • Schmitz G.
        The conjugated linoleic acid isomer trans-9,trans-11 is a dietary occurring agonist of liver X receptor alpha.
        Biochem Biophys Res Commun. 2009; 388: 660-666
        • Miyamoto J.
        • Mizukure T.
        • Park S.B.
        • Kishino S.
        • Kimura I.
        • Hirano K.
        • et al.
        A gut microbial metabolite of linoleic acid, 10-hydroxycis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway.
        J Biol Chem. 2015; 290: 2902-2918
        • Wan Y.
        • Wang F.
        • Yuan J.
        • Li J.
        • Jiang D.
        • Zhang J.
        • et al.
        Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial.
        Gut. 2019; 68: 1417-1429
        • Bidu C.
        • Escoula Q.
        • Bellenger S.
        • Spor A.
        • Galan M.
        • Geissler A.
        • et al.
        The transplantation of ω3 PUFA-altered gut microbiota of fat-1 mice to wild-type littermates prevents obesity and associated metabolic disorders.
        Diabetes. 2018; 67: 1512-1523
        • Rinninella E.
        • Cintoni M.
        • Raoul P.
        • Lopetuso L.R.
        • Scaldaferri F.
        • Pulcini G.
        • et al.
        Food components and dietary habits: keys for a healthy gut microbiota composition.
        Nutrients. 2019; 11: 2393