Advertisement

Effect of nuts on components of metabolic syndrome in healthy adults with overweight/obesity: A systematic review and meta-analysis

      Highlights

      • Effects of nut consumption on components of metabolic syndrome were summarized.
      • Nut consumption led to a significant reduction in some components of lipids profile.
      • Nut intake had no effect on glycemic markers and blood pressure.

      Abstract

      Aims

      Randomized controlled trials evaluating the effects of nut consumption on the metabolic profile of healthy adults with overweight/obesity have yielded conflicting results. This systematic review and meta-analysis aimed to summarize the effects of incorporating nuts into the diet on serum lipid profile, glycemic markers, and blood pressure in healthy adults with overweight/obesity.

      Data synthesis

      PubMed, Embase, Scopus, Web of Science, and Cochrane Library were searched up to April 2021. The random-effects model was used to determine the pooled effect sizes expressed as weighted mean difference (WMD) with % 95 confidence intervals (CIs). Ten eligible RCTs (with 12 arms) were included in the meta-analysis. The meta-analysis revealed that nut intake significantly decreased serum triglycerides (TG) (WMD: -13.19 mg/dL, 95% CI: - 25.90, - 0.48). Furthermore, subgroup analysis showed a significant reduction in serum LDL-cholesterol (LDL-C) following adherence to normocaloric, nut-enriched diets (WMD: - 4.56 mg/dL, 95% CI: - 8.24, - 0.88). However, nuts did not affect serum total cholesterol, high-density lipoprotein cholesterol, glycemic markers, and blood pressure.

      Conclusions

      Overall, incorporating nuts into the diet of healthy adults with overweight/obesity have favorable effects on serum TG and LDL-C. Thus, nuts might exert protective effects against dyslipidemia in this population.

      Registry number

      PROPSPERO CRD42021250662.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • WHO
        Obesity and overweight: World health organization.
        ([Available from:)
        • Fruh S.M.
        Obesity: risk factors, complications, and strategies for sustainable long-term weight management.
        J Am Assoc Nurse Pract. 2017; 29: S3-S14https://doi.org/10.1002/2327-6924.12510
        • Hruby A.
        • Hu F.B.
        The epidemiology of obesity: a big picture.
        Pharmacoeconomics. 2015; 33: 673-689https://doi.org/10.1007/s40273-014-0243-x
        • Smethers A.D.
        • Rolls B.J.
        Dietary management of obesity: cornerstones of healthy eating patterns.
        Med Clin. 2018; 102: 107-124https://doi.org/10.1016/j.mcna.2017.08.009
        • Rolls B.J.
        Dietary energy density: applying behavioural science to weight management.
        Nutr Bull. 2017; 42: 246-253https://doi.org/10.1111/nbu.12280
        • Souza R.G.
        • Gomes A.C.
        • Naves M.M.
        • Mota J.F.
        Nuts and legume seeds for cardiovascular risk reduction: scientific evidence and mechanisms of action.
        Nutr Rev. 2015; 73: 335-347https://doi.org/10.1093/nutrit/nuu008
        • Bazshahi E.
        • Sheikhhossein F.
        • Amini M.R.
        • Shab-Bidar S.
        The association of dietary energy density and the risk of obesity, type 2 diabetes and metabolic syndrome: a systematic review and meta-analysis of observational studies.
        Int J Clin Pract. 2021; 75e14291https://doi.org/10.1111/ijcp.14291
        • Stopyra M.A.
        • Friederich H.C.
        • Lavandier N.
        • Mönning E.
        • Bendszus M.
        • Herzog W.
        • et al.
        Homeostasis and food craving in obesity: a functional MRI study.
        Int J Obes. 2021; 45: 2464-2470https://doi.org/10.1038/s41366-021-00920-4
        • DGA
        U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015 – 2020 dietary guidelines for Americans.
        2015
        • Hassannejad R.
        • Mohammadifard N.
        • Kazemi I.
        • Mansourian M.
        • Sadeghi M.
        • Roohafza H.
        • et al.
        Long-term nuts intake and metabolic syndrome: a 13-year longitudinal population-based study.
        Clin Nutr. 2019; 38: 1246-1252https://doi.org/10.1016/j.clnu.2018.05.006
        • Hosseinpour-Niazi S.
        • Hosseini S.
        • Mirmiran P.
        • Azizi F.
        Prospective study of nut consumption and incidence of metabolic syndrome: tehran lipid and glucose study.
        Nutrients. 2017; 9https://doi.org/10.3390/nu9101056
        • Jaceldo-Siegl K.
        • Haddad E.
        • Oda K.
        • Fraser G.E.
        • Sabaté J.
        Tree nuts are inversely associated with metabolic syndrome and obesity: the Adventist health study-2.
        PLoS One. 2014; 9: e85133https://doi.org/10.1371/journal.pone.0085133
        • Kim R.J.
        • Wang L.
        • Worley S.
        • Leonard D.
        Nut consumption and metabolic syndrome in US adolescents.
        Publ Health Nutr. 2018; 21: 3245-3252https://doi.org/10.1017/s1368980018002070
        • O'Neil C.E.
        • Fulgoni 3rd, V.L.
        • Nicklas T.A.
        Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: nhanes 2005-2010.
        Nutr J. 2015; 14: 64https://doi.org/10.1186/s12937-015-0052-x
        • Mohammadifard N.
        • Haghighatdoost F.
        • Mansourian M.
        • Hassannejhad R.
        • Sadeghi M.
        • Roohafza H.
        • et al.
        Long-term association of nut consumption and cardiometabolic risk factors.
        Nutr Metabol Cardiovasc Dis. 2019; 29: 972-982https://doi.org/10.1016/j.numecd.2019.04.014
        • Abazarfard Z.
        • Salehi M.
        • Keshavarzi S.
        The effect of almonds on anthropometric measurements and lipid profile in overweight and obese females in a weight reduction program: a randomized controlled clinical trial.
        J Res Med Sci. 2014; 19: 457-464
        • Abbaspour N.
        • Roberts T.
        • Hooshmand S.
        • Kern M.
        • Hong M.Y.
        Mixed nut consumption may improve cardiovascular disease risk factors in overweight and obese adults.
        Nutrients. 2019; 11: 1488https://doi.org/10.3390/nu11071488
        • Johnston C.S.
        • Trier C.M.
        • Fleming K.R.
        The effect of peanut and grain bar preloads on postmeal satiety, glycemia, and weight loss in healthy individuals: an acute and a chronic randomized intervention trial.
        Nutr J. 2013; 12: 35https://doi.org/10.1186/1475-2891-12-35
        • Iacobini C.
        • Pugliese G.
        • Blasetti Fantauzzi C.
        • Federici M.
        • Menini S.
        Metabolically healthy versus metabolically unhealthy obesity.
        Metabolism. 2019; 92: 51-60https://doi.org/10.1016/j.metabol.2018.11.009
        • Lin H.
        • Zhang L.
        • Zheng R.
        • Zheng Y.
        The prevalence, metabolic risk and effects of lifestyle intervention for metabolically healthy obesity: a systematic review and meta-analysis: a PRISMA-compliant article.
        Medicine (Baltim). 2017; 96: e8838https://doi.org/10.1097/md.0000000000008838
        • Wildman R.P.
        • Muntner P.
        • Reynolds K.
        • McGinn A.P.
        • Rajpathak S.
        • Wylie-Rosett J.
        • et al.
        The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004).
        Arch Intern Med. 2008; 168: 1617-1624https://doi.org/10.1001/archinte.168.15.1617
        • Eckel N.
        • Li Y.
        • Kuxhaus O.
        • Stefan N.
        • Hu F.B.
        • Schulze M.B.
        Transition from metabolic healthy to unhealthy phenotypes and association with cardiovascular disease risk across BMI categories in 90 257 women (the Nurses' Health Study): 30 year follow-up from a prospective cohort study.
        Lancet Diabetes Endocrinol. 2018; 6: 714-724https://doi.org/10.1016/s2213-8587(18)30137-2
        • Mongraw-Chaffin M.
        • Foster M.C.
        • Anderson C.A.M.
        • Burke G.L.
        • Haq N.
        • Kalyani R.R.
        • et al.
        Metabolically healthy obesity, transition to metabolic syndrome, and cardiovascular risk.
        J Am Coll Cardiol. 2018; 71: 1857-1865https://doi.org/10.1016/j.jacc.2018.02.055
        • Hosseinpanah F.
        • Tasdighi E.
        • Barzin M.
        • Mahdavi M.
        • Ghanbarian A.
        • Valizadeh M.
        • et al.
        The association between transition from metabolically healthy obesity to metabolic syndrome, and incidence of cardiovascular disease: tehran lipid and glucose study.
        PLoS One. 2020; 15: e0239164https://doi.org/10.1371/journal.pone.0239164
        • Caleyachetty R.
        • Thomas G.N.
        • Toulis K.A.
        • Mohammed N.
        • Gokhale K.M.
        • Balachandran K.
        • et al.
        Metabolically healthy obese and incident cardiovascular disease events among 3.5 million men and women.
        J Am Coll Cardiol. 2017; 70: 1429-1437https://doi.org/10.1016/j.jacc.2017.07.763
        • Hwang L.C.
        • Bai C.H.
        • Sun C.A.
        • Chen C.J.
        Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan.
        Asia Pac J Clin Nutr. 2012; 21: 227-233
        • Stelmach-Mardas M.
        • Walkowiak J.
        Dietary interventions and changes in cardio-metabolic parameters in metabolically healthy obese subjects: a systematic review with meta-analysis.
        Nutrients. 2016; 8: 455https://doi.org/10.3390/nu8080455
        • Vilela D.L.S.
        • Fonseca P.G.
        • Pinto S.L.
        • Bressan J.
        Influence of dietary patterns on the metabolically healthy obesity phenotype: a systematic review.
        Nutr Metabol Cardiovasc Dis. 2021; 31: 2779-2791https://doi.org/10.1016/j.numecd.2021.05.007
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
      1. Higgins J.P.T. Thomas J. Chandler J. Cumpston M. Li T. Page M.J. Welch V.A. Cochrane Handbook for systematic reviews of interventions version 6.3. 2022 (Cochrane)
        • Fernández-Rodríguez R.
        • Mesas A.E.
        • Garrido-Miguel M.
        • Martínez-Ortega I.A.
        • Jiménez-López E.
        • Martínez-Vizcaíno V.
        The relationship of tree nuts and peanuts with adiposity parameters: a systematic review and network meta-analysis.
        Nutrients. 2021; 13https://doi.org/10.3390/nu13072251
        • Higgins J.
        • Altman D.
        • Sterne J.
        On behalf of the Cochrane statistical methods group and the Cochrane bias methods Group.Chapter 8: assessing risk of bias in included studies.
        in: Higgins J.P.T. Green S. Cochrane Handbook for systematic reviews of interventions version 5.1.0. The Cochrane Collaboration, 2011 (Available from)
        • McKay D.L.
        • Eliasziw M.
        • Chen C.Y.O.
        • Blumberg J.B.
        A pecan-rich diet improves cardiometabolic risk factors in overweight and obese adults: a randomized controlled trial.
        Nutrients. 2018; 10: 339https://doi.org/10.3390/nu10030339
        • Moreira Alves R.D.
        • Boroni Moreira A.P.
        • Macedo V.S.
        • Bressan J.
        • de Cássia Gonçalves Alfenas R.
        • Mattes R.
        • et al.
        High-oleic peanuts: new perspective to attenuate glucose homeostasis disruption and inflammation related obesity.
        Obesity. 2014; 22: 1981-1988https://doi.org/10.1002/oby.20825
        • de Souza R.G.M.
        • Gomes A.C.
        • de Castro I.A.
        • Mota J.F.
        A baru almond-enriched diet reduces abdominal adiposity and improves high-density lipoprotein concentrations: a randomized, placebo-controlled trial.
        Nutrition. 2018; 55–56: 154-160https://doi.org/10.1016/j.nut.2018.06.001
        • Tey S.L.
        • Gray A.R.
        • Chisholm A.W.
        • Delahunty C.M.
        • Brown R.C.
        The dose of hazelnuts influences acceptance and diet quality but not inflammatory markers and body composition in overweight and obese individuals.
        J Nutr. 2013; 143: 1254-1262https://doi.org/10.3945/jn.113.174714
        • Foster G.D.
        • Shantz K.L.
        • Vander Veur S.S.
        • Oliver T.L.
        • Lent M.R.
        • Virus A.
        • et al.
        A randomized trial of the effects of an almond-enriched, hypocaloric diet in the treatment of obesity.
        Am J Clin Nutr. 2012; 96: 249-254https://doi.org/10.3945/ajcn.112.037895
        • Li Z.
        • Song R.
        • Nguyen C.
        • Zerlin A.
        • Karp H.
        • Naowamondhol K.
        • et al.
        Pistachio nuts reduce triglycerides and body weight by comparison to refined carbohydrate snack in obese subjects on a 12-week weight loss program.
        J Am Coll Nutr. 2010; 29: 198-203https://doi.org/10.1080/07315724.2010.10719834
        • Rock C.L.
        • Zunshine E.
        • Nguyen H.T.
        • Perez A.O.
        • Zoumas C.
        • Pakiz B.
        • et al.
        Effects of pistachio consumption in a behavioral weight loss intervention on weight change, cardiometabolic factors, and dietary intake.
        Nutrients. 2020; 12: 2155https://doi.org/10.3390/nu12072155
        • Blanco Mejia S.
        • Kendall C.W.
        • Viguiliouk E.
        • Augustin L.S.
        • Ha V.
        • Cozma A.I.
        • et al.
        Effect of tree nuts on metabolic syndrome criteria: a systematic review and meta-analysis of randomised controlled trials.
        BMJ Open. 2014; 4: e004660https://doi.org/10.1136/bmjopen-2013-004660
        • Del Gobbo L.C.
        • Falk M.C.
        • Feldman R.
        • Lewis K.
        • Mozaffarian D.
        Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials.
        Am J Clin Nutr. 2015; 102: 1347-1356https://doi.org/10.3945/ajcn.115.110965
        • Ros E.
        Health benefits of nut consumption.
        Nutrients. 2010; 2: 652-682https://doi.org/10.3390/nu2070652
        • DiNicolantonio J.J.
        • O'Keefe J.H.
        Effects of dietary fats on blood lipids: a review of direct comparison trials.
        Open Heart. 2018; 5: e000871https://doi.org/10.1136/openhrt-2018-000871
        • Ooi E.M.
        • Watts G.F.
        • Ng T.W.
        • Barrett P.H.
        Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.
        Nutrients. 2015; 7: 4416-4425https://doi.org/10.3390/nu7064416
        • Islam S.U.
        • Ahmed M.B.
        • Ahsan H.
        • Lee Y.-S.
        Recent molecular mechanisms and beneficial effects of phytochemicals and plant-based whole foods in reducing LDL-C and preventing cardiovascular disease.
        Antioxidants. 2021; 10: 784https://doi.org/10.3390/antiox10050784
        • Sepandi M.
        • Abbaszadeh S.
        • Qobady S.
        • Taghdir M.
        Effect of L-Arginine supplementation on lipid profiles and inflammatory markers: a systematic review and meta-analysis of randomized controlled trials.
        Pharmacol Res. 2019; 148: 104407https://doi.org/10.1016/j.phrs.2019.104407
        • Ras R.T.
        • Geleijnse J.M.
        • Trautwein E.A.
        LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies.
        Br J Nutr. 2014; 112: 214-219https://doi.org/10.1017/s0007114514000750
        • St-Onge M.P.
        • Jones P.J.
        Phytosterols and human lipid metabolism: efficacy, safety, and novel foods.
        Lipids. 2003; 38: 367-375https://doi.org/10.1007/s11745-003-1071-3
        • Brown R.C.
        • Tey S.L.
        • Gray A.R.
        • Chisholm A.
        • Smith C.
        • Fleming E.
        • et al.
        Nut consumption is associated with better nutrient intakes: results from the 2008/09 New Zealand Adult Nutrition Survey.
        Br J Nutr. 2016; 115: 105-112https://doi.org/10.1017/s0007114515004122
        • Dikariyanto V.
        • Berry S.E.
        • Pot G.K.
        • Francis L.
        • Smith L.
        • Hall W.L.
        Tree nut snack consumption is associated with better diet quality and CVD risk in the UK adult population: national Diet and Nutrition Survey (NDNS) 2008-2014.
        Publ Health Nutr. 2020; 23: 3160-3169https://doi.org/10.1017/s1368980019003914
        • Pearson K.R.
        • Tey S.L.
        • Gray A.R.
        • Chisholm A.
        • Brown R.C.
        Energy compensation and nutrient displacement following regular consumption of hazelnuts and other energy-dense snack foods in non-obese individuals.
        Eur J Nutr. 2017; 56: 1255-1267https://doi.org/10.1007/s00394-016-1176-2
        • Wibisono C.
        • Probst Y.
        • Neale E.
        • Tapsell L.
        Changes in diet quality during a 12 month weight loss randomised controlled trial.
        BMC Nutrition. 2017; 3: 38https://doi.org/10.1186/s40795-017-0157-z
        • Capel F.
        • Viguerie N.
        • Vega N.
        • Dejean S.
        • Arner P.
        • Klimcakova E.
        • et al.
        Contribution of energy restriction and macronutrient composition to changes in adipose tissue gene expression during dietary weight-loss programs in obese women.
        J Clin Endocrinol Metab. 2008; 93: 4315-4322https://doi.org/10.1210/jc.2008-0814
        • Minderis P.
        • Fokin A.
        • Dirmontas M.
        • Kvedaras M.
        • Ratkevicius A.
        Caloric restriction per se rather than dietary macronutrient distribution plays a primary role in metabolic health and body composition improvements in obese mice.
        Nutrients. 2021; 13: 3004
        • Lee-Bravatti M.A.
        • Wang J.
        • Avendano E.E.
        • King L.
        • Johnson E.J.
        • Raman G.
        Almond consumption and risk factors for cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials.
        Adv Nutr. 2019; 10: 1076-1088https://doi.org/10.1093/advances/nmz043
        • Li J.
        • Jiang B.
        • Santos H O.
        • Santos D.
        • Singh A.
        • Wang L.
        Effects of walnut intake on blood pressure: a systematic review and meta-analysis of randomized controlled trials.
        Phytother Res. 2020; 34: 2921-2931https://doi.org/10.1002/ptr.6740
        • Yang L.
        • Guo Z.
        • Qi S.
        • Fang T.
        • Zhu H.
        • Santos H.O.
        • et al.
        Walnut intake may increase circulating adiponectin and leptin levels but does not improve glycemic biomarkers: a systematic review and meta-analysis of randomized clinical trials.
        Compl Ther Med. 2020; 52: 102505https://doi.org/10.1016/j.ctim.2020.102505
        • Jafari Azad B.
        • Daneshzad E.
        • Azadbakht L.
        Peanut and cardiovascular disease risk factors: a systematic review and meta-analysis.
        Crit Rev Food Sci Nutr. 2020; 60: 1123-1140https://doi.org/10.1080/10408398.2018.1558395
        • Tindall A.M.
        • Johnston E.A.
        • Kris-Etherton P.M.
        • Petersen K.S.
        The effect of nuts on markers of glycemic control: a systematic review and meta-analysis of randomized controlled trials.
        Am J Clin Nutr. 2019; 109: 297-314https://doi.org/10.1093/ajcn/nqy236
        • Ghanavati M.
        • Rahmani J.
        • Clark C.C.T.
        • Hosseinabadi S.M.
        • Rahimlou M.
        Pistachios and cardiometabolic risk factors: a systematic review and meta-analysis of randomized controlled clinical trials.
        Compl Ther Med. 2020; 52: 102513https://doi.org/10.1016/j.ctim.2020.102513
        • Nowrouzi-Sohrabi P.
        • Hassanipour S.
        • Sisakht M.
        • Daryabeygi-Khotbehsara R.
        • Savardashtaki A.
        • Fathalipour M.
        The effectiveness of pistachio on glycemic control and insulin sensitivity in patients with type 2 diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis.
        Diabetes Metabol Syndr. 2020; 14: 1589-1595https://doi.org/10.1016/j.dsx.2020.07.052
        • Mohammadifard N.
        • Salehi-Abargouei A.
        • Salas-Salvadó J.
        • Guasch-Ferré M.
        • Humphries K.
        • Sarrafzadegan N.
        The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials.
        Am J Clin Nutr. 2015; 101: 966-982https://doi.org/10.3945/ajcn.114.091595
        • Deeks J.J.
        • Higgins J.P.T.
        • Altman D.G.
        Chapter 10: analysing data and undertaking meta-analyses.
        in: Higgins J.P.T. Thomas J. Chandler J. Cumpston M. Li T. Page M.J. Welch V.A. Cochrane Handbook for systematic reviews of interventions version 6.3. 2022 (Cochrane)
        • Page M.J.
        • Higgins J.P.T.
        • Sterne J.A.C.
        Chapter 13: assessing risk of bias due to missing results in a synthesis.
        in: Higgins J.P.T. Thomas J. Chandler J. Cumpston M. Li T. Page M.J. Welch V.A. Cochrane Handbook for systematic reviews of interventions version 6.3. 2022 (Cochrane)