Neck circumference for predicting the occurrence of future cardiovascular events: A 7.6-year longitudinal study

Tingting Hu, Yun Shen, Weijie Cao, Yiting Xu Yufei Wang, Xiaojing Ma, Yuqian Bao

PII: S0939-4753(22)00368-4
DOI: https://doi.org/10.1016/j.numecd.2022.08.023
Reference: NUMECD 3108
To appear in: Nutrition, Metabolism and Cardiovascular Diseases

Received Date: 19 May 2022
Revised Date: 11 August 2022
Accepted Date: 29 August 2022

Please cite this article as: Hu T, Shen Y, Cao W, Yufei Wang, Xiaojing Ma YX, Bao Y, Neck circumference for predicting the occurrence of future cardiovascular events: A 7.6-year longitudinal study, Nutrition, Metabolism and Cardiovascular Diseases, https://doi.org/10.1016/j.numecd.2022.08.023.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition and the Department of Clinical Medicine and Surgery, Federico II University.
Neck circumference for predicting the occurrence of future cardiovascular events: A 7.6-year longitudinal study

Tingting Hu*, Yun Shen*, Weijie Cao, Yiting Xu, Yufei Wang, Xiaojing Ma#, Yuqian Bao#

Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital; Shanghai Clinical Center for Diabetes; Shanghai Key Clinical Center for Metabolic Disease; Shanghai Diabetes Institute; Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China

*These two authors contributed equally to this work.

#Correspondence should be addressed to Xiaojing Ma and Yuqian Bao.

Correspondence:

Xiaojing Ma and Yuqian Bao,

Department of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai 200233, China.

Tel: 86-21-64369181; Fax: 86-21-64368031;
Email: maxiaojing@sjtu.edu.cn; yqbao@sjtu.edu.cn.

Abstract word count: 246

Manuscript word count: 3659

Number of reference: 38

Number of figures: 3

Number of tables: 3

Keywords: Cardiovascular event, Neck circumference, Longitudinal study

List of acronyms:

Neck circumference (NC); Cardiovascular (CV); Hazard ratio (HR); Confidence interval (CI); Cardiovascular disease (CVD); Global Burden of Disease (GBD); Fasting plasma glucose (FPG); Ischemic heart disease (IHD); International Classification of Diseases-10 (ICD-10); Waist circumference (WC); Body mass index (BMI); Fasting insulin (FINS); Glycated hemoglobin (HbA1c); 2-hour blood glucose (2hPG); Total cholesterol (TC); Triglyceride (TG); High-density lipoprotein cholesterol (HDL-C); Low-density lipoprotein cholesterol (LDL-C); Homeostasis model-assessed insulin resistance index (HOMA-IR); Magnetic resonance imaging
(MRI).

Acknowledgements

This work was supported by grant from Shanghai Municipal Science and Technology Commission Medical Guide Project (19411964300).
Abstract

**Background & Aims:** This study aimed to investigate whether neck circumference (NC) could be used to predict future cardiovascular (CV) events in a community-based Chinese cohort.

**Methods and Results:** We enrolled 1435 participants aged 50-80 years (men, 43.62%) from communities in Shanghai. High NC was defined as NC ≥ 38.5 cm in men and NC ≥ 34.5 cm in women. Kaplan-Meier analysis and Cox proportional hazards regression were performed to explore the association between NC and CV events. During a mean follow-up period of 7.6 years, 148 CV events (10.31%) occurred. The incidence of CV events was higher in men than in women (83 (13.26%) vs 65 (8.03%), P = 0.002). Multivariable-adjusted Cox regression analysis showed that for every 1-SD increase in NC in the whole population, the hazard ratio (HR) of CV events was 1.45 (95% confidence interval [CI], 1.15-1.83). The dose-response association between NC and CV events was significant in men (HR, 1.37, 95% CI, 1.10-1.71), but not in women (HR, 1.19, 95% CI, 0.94-1.52). In comparison with participants showing low baseline NC, those with high baseline NC showed a significantly higher risk of CV events (HR, 1.59, 95% CI, 1.14-2.22). Further stratified by sex, the positive association remained significant in men (HR, 1.90, 95% CI, 1.21-2.98), but not in women (HR, 1.25, 95% CI, 0.75-2.07).

**Conclusion:** NC was significantly associated with the risk of future CV events in middle-aged and elderly population in the community and was a better predictor in
65 men.
Introduction

Cardiovascular disease (CVD) is a major global health concern. According to the 2020 Global Burden of Disease (GBD) data, the total number of patients with CVD has doubled from 271 million in 1990 to 523 million in 2019, and CVD has become the disease with the highest disability and mortality rates [1]. According to the summary of the China Cardiovascular Health and Disease Report 2020, the incidence of CVD continues to rise, and the number of patients with CVD reached 330 million by 2020. Since 2006, cardiovascular (CV) mortality in China has always ranked first, with 2 out of every 5 deaths due to CVD [2]. A national population-based survey of 74,726 Chinese adults showed that only 1.06% of Chinese adults had ideal CV health status [3].

Obesity has been confirmed to be closely related to a variety of CVD risk factors such as hypertension, type 2 diabetes, and dyslipidemia [4,5]. Obesity has also been related to the occurrence of CV events [6]. The adipose tissue of the trunk is a unique fat depot. In comparison with systemic obesity, excessive accumulation of fat in this region can confer an additional risk of energy imbalance and is independently associated with metabolic abnormalities [7,8]. Neck circumference (NC) is a simple anthropometric parameter that reflects the subcutaneous fat content of the trunk and has the advantages of extremely low cost, high operability, and good repeatability [9]. Previous studies have demonstrated that NC is closely related to CVD risk factors such as subclinical atherosclerosis and metabolic syndrome [10,11], but results of
current studies on the relationship between NC and CV events are still inconsistent. A cohort study of 3009 patients with type 2 diabetes revealed that patients with high NC had a significantly increased risk of CV events [12]. However, in the Jackson Heart Study of 5290 subjects, after adjustment for all factors, no independent association was observed between NC and the risk of all-cause mortality, stroke, myocardial infarction, and heart failure for hospitalization [13]. There is still a lack of prospective studies on the predictive ability of NC for CV events in Chinese community-based population. Thus, this study aimed to explore the predictive ability of NC for CV events in a middle-aged and elderly cohort in Chinese communities.

Methods

Study population

The study participants were recruited from communities in Shanghai from October 2013 to October 2014. All participants received standardized questionnaires and underwent physical examinations and laboratory measurements. The contents of the questionnaires included history of current and past diseases, medication, family diseases, and personal habits [14]. All participants signed informed consent before participating in the study. This study was approved by the Ethics Committee of the Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine.
Participants with validated history of malignant tumors, thyroid dysfunction or hyperthyroidism or hypothyroidism, cardiovascular or cerebrovascular diseases, severe liver or kidney dysfunction, treatment with steroids or thyroxine, or premenopausal status were excluded at baseline. Follow-up assessments were conducted from October 2021 to February 2022 by phone calls or through electronic medical records, with a mean follow-up period of 7.6 ± 0.6 years. During the follow-up period, 33 people died due to non-CV events, 388 people were lost to follow-up due to relocation, and 1435 participants aged 50-80 years (mean age: 60 ± 5.1 years) were eventually included in this study, with a follow-up response rate of 80.39% (Fig. 1). No significant differences were observed in the baseline clinical characteristics between the enrolled and lost participants, except for fasting plasma glucose (FPG) level and education attainment (both $P < 0.05$; other variables, $P > 0.05$).

Outcomes

The primary outcome of this study was the first occurrence of CV events, defined as a composite of ischemic heart disease (IHD) and cerebrovascular events. IHD included cardiac death, myocardial infarction, unstable angina pectoris, hospitalization for heart failure, and coronary revascularization. Cerebrovascular events included ischemic stroke or death due to a cerebrovascular event. Information on the clinical outcomes was collected via telephone and medical information. Subsequently, event information in the medical records was further confirmed by a
trained physician and classified using the International Classification of Diseases (ICD-10) codes, and CV events were coded from I00 to I99. Self-reported events showed substantial-to-excellent agreement with medical records (Kappa statistics: 0.94-0.99).

**Baseline anthropometric and laboratory measurements**

At baseline, all participants underwent a physical examination, which included measurements of height, weight, NC, waist circumference (WC), and blood pressure. For the NC measurements, participants stood upright with their heads in a horizontal position. The upper edge of the tape was positioned just below the protrusion of the thyroid cartilage and perpendicular to the long axis of the neck (avoiding skin compression). WC was measured at the horizontal position of the mid-axillary line between the lower edge of the costal arch and the midpoint of the iliac crest. According to our previous study, high NC was defined as NC ≥ 38.5 cm in men and ≥ 34.5 cm in women [15]. Body mass index (BMI) = weight (kg) / height^2 (m^2).

Fasting blood samples were collected from each participant at baseline. Participants with no history of diabetes underwent a 75-g oral glucose tolerance test, and those with a history of diabetes received a 100-g steamed bread meal instead. In this study, blood routine along with measurements of FPG, fasting insulin (FINS), glycated hemoglobin (HbA1c), 2-hour blood glucose (2hPG), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were performed. All laboratory tests were
performed according to previously described standardized methods [14]. Homeostasis model-assessed insulin resistance index (HOMA-IR) was calculated as FINS (mU/L) × FPG (mmol/L) / 22.5 [16].

**Definitions**

Participants who smoked at least one cigarette per day for more than six months at baseline in this study were defined as current smokers [17]. Hypertension was diagnosed as systolic blood pressure ≥ 140 mmHg, and/or diastolic blood pressure ≥ 90 mmHg, and/or use of antihypertensive medications according to the ESC/ESH (European Society of Cardiology/European Society of Hypertension) guidelines 2018 criteria [18]. On the basis of ESC 2019 guidelines, diabetes was identified by FPG ≥ 7.0 mmol/L, and/or 2hPG ≥ 11.1 mmol/L, and/or HbA1c ≥ 6.5%, and/or a previous diagnosis of diabetes [19]. Dyslipidemia, based on ESC/EAS (European Atherosclerosis Society) 2019 guidelines, was diagnosed when one of the following criteria was met: (1) TC ≥ 5.2 mmol/L (200 mg/dl), (2) TG ≥ 1.7 mmol/L (150 mg/dl), (3) use of lipid-lowering drugs [20]. WC ≥ 90 cm in men or ≥ 85 cm in women was considered to indicate abdominal obesity, according to the Chinese Guidelines for the Prevention and Treatment of Type 2 Diabetes (2020 Edition) [21]. On the basis of the World Health Organization 2000 criteria, BMI was categorized as underweight/normal weight (BMI < 25 kg/m²), overweight (BMI ≥ 25 kg/m²), and obesity (BMI ≥ 30 kg/m²) [22].

**Statistical analyses**
Normally distributed data, skewed data, and categorical variables were presented as mean ± standard deviation, median and interquartile range, frequencies and percentages, respectively. Intergroup comparisons were conducted using Student’s t-tests for normally distributed data, Wilcoxon rank-sum test for skewed data, and Chi-square test for categorical variables. Kaplan-Meier analysis with log-rank test was used to assess the cumulative incidence of CV events between different NC groups by the follow-up time. The Cox proportional hazards model was applied to assess the effects of NC on CV events. This study also explored the potential nonlinear relationship between NC and CV events using restricted cubic splines. Sensitivity analysis was performed by excluding current smokers, participants with events during the first year of follow-up, or aged ≥75 years [23]. We used R 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria) for analysis. A two-tailed $P < 0.05$ was considered statistically significant.

Results

Baseline clinical characteristics of the study participants

A total of 1435 participants (626 men and 809 women) aged 50-80 years (mean $60 \pm 5.1$ years) who completed follow-up were included. The mean NCs for total population, men and women were $35.6 \pm 3.1$ cm, $38.0 \pm 2.3$ cm and $33.7 \pm 2.0$ cm, respectively. During a mean follow-up period of 7.6 years, 148 CV events (10.31%) occurred, including 62 IHD and 86 cerebrovascular events. The incidence of CV
events was higher in men than in women (83 (13.26%) vs 65 (8.03%), \( P = 0.002 \)).

Participants were further divided into non-CV event and CV event groups depending on the occurrence of CV events during follow-up. The baseline characteristics of the study participants are presented in Table 1. In comparison with the non-CV event group, BMI, NC, WC, blood pressure, FPG, 2hPG, HbA1c, FINS, HOMA-IR, and TG were significantly higher (all \( P < 0.05 \)) in the CV event group, while HDL-C level was significantly lower (\( P = 0.01 \)). The proportions of overweight/obesity, diabetes, hypertension, antidiabetic therapy, and antihypertensive therapy in the CV event group were significantly higher than those in the non-CV event group (all \( P < 0.05 \)). However, the two groups showed no significant differences in the proportion of education attainment, smoking status, family history of CVD, dyslipidemia, and lipid-lowering treatment (all \( P > 0.05 \)).

**The predictive ability of NC for CV events**

Kaplan-Meier analysis was used to determine the predictive ability of NC for CV events in middle-aged and elderly population (Fig. 2). The results showed that the sex-adjusted cumulative incidence of CV events in participants with high NC was significantly higher than that in those with low NC in the whole population (\( P < 0.001 \)). When stratified by sex, the association remained positive in men (\( P < 0.001 \)), but became marginally significant in women (\( P = 0.05 \)). Moreover, there was no evidence of nonlinear associations between NC and the risk of CV events through the restricted cubic spline analysis (all \( P \) for nonlinearity > 0.05).
As shown in Table 2, increasing continuous NC was associated with a higher risk of CV events after multivariate adjustment (hazard ratio [HR], 1.45, 95% confidence interval [CI], 1.15-1.83). When stratified by sex, the dose-response association still existed in men (HR, 1.37, 95% CI, 1.10-1.71); however, the effect approached significance in women (HR, 1.19, 95% CI, 0.94-1.52). Cox regression analyses showed that (Table 2), those with high NC had a 59% increased risk of CV events compared with those with low NC (HR, 1.59, 95% CI, 1.14-2.22). The risk of CV events in men with high NC was markedly increased (HR, 1.90, 95% CI, 1.21-2.98), while the effect was substantially diminished in women (HR, 1.25, 95% CI, 0.75-2.07).

To further verify the association between NC and the risk of CV events, sensitivity analysis was conducted by excluding current smokers, participants who had events during the first year of follow-up, or aged ≥ 75 years. The results showed that, increasing NC was positively associated with the occurrence of CV events in total population and men (all P < 0.05), while not in women. Among non-smokers, those with high NC had a 46% (HR, 1.46, 95% CI, 1.11-1.91) increased risk of CV events in total population. Stratified by sex, the HRs of CV events in men and women with high NC were 1.59 (95% CI 1.13-2.24) and 1.19 (95% CI 0.93-1.52), respectively. Similar results were observed when excluding participants who had events during the first year of follow-up (total population: HR 1.47 95% CI 1.16-1.86; men: HR 1.35, 95% CI 1.09-1.69; women: HR 1.25, 95% CI 0.97-1.60), or aged ≥ 75 years (total population: HR 1.45 95% CI 1.15-1.82; men: HR 1.37, 95% CI 1.10-1.71;
women: HR 1.19, 95% CI 0.93-1.51).

**Association between NC and the risk of IHD or cerebrovascular events**

Among 148 CV events, 62 were IHD, with 39 occurred in men and 23 in women. Association of NC with IHD was similar to the association with CV events, with multivariate-adjusted HRs of 2.19 (95% CI, 1.30-3.70) in the whole population, 3.78 (95% CI, 1.84-7.75) in men, and 0.99 (95% CI, 0.42-2.31) in women compared with participants with low NC (Table 3). Among 148 CV events, 86 were cerebrovascular events, of which 44 occurred in men and 42 in women. No significant association was observed between NC and cerebrovascular events in the whole population, men and women (all P > 0.05).

**Comparison of the effects of NC, BMI, and WC in identifying CV events**

As shown in Fig 3, during a mean follow-up period of 7.6 years, 148 CV events occurred in total. Participants with high baseline NC, BMI ≥ 25 kg/m², high baseline WC experienced 78, 76 and 80 CV events, respectively. No significant difference was observed between the predictive rates of high baseline NC and baseline BMI ≥ 25 kg/m² (52.70% vs 51.35%, P > 0.05). In addition, the predictive rates of CV events in participants with high NC and WC showed no statistical difference (52.70% vs 54.05%, P > 0.05).

A total of 83 CV events occurred in men. Among which, 49, 46 and 48 CV events occurred in those with baseline high NC, BMI ≥ 25 kg/m², and high WC, respectively.
No significant differences in predictive ability were observed between baseline high NC and BMI ≥ 25 kg/m² (59.04% vs 55.42%, \( P > 0.05 \)) or baseline high NC and WC (59.04% vs 57.83%, \( P > 0.05 \)) in men. Similarly, among 65 women with CV events, 29 CV events occurred in those with baseline high NC, 30 CV events occurred in those with baseline BMI ≥ 25 kg/m², and 32 CV events occurred in those with baseline high WC. The predictive rates of high baseline NC and BMI ≥ 25 kg/m² (44.62% vs 46.15%, \( P > 0.05 \)) or baseline high NC and WC (44.62% vs 49.23%, \( P > 0.05 \)) showed no difference.

**Discussion**

To the best of our knowledge, this is the first prospective study to evaluate the ability of NC to predict CV events in middle-aged and elderly Chinese population. We found that individuals with high NC showed a 1.59-fold higher risk of developing CV events than those with low NC in the next 7.6 years, and the ability of NC to predict IHD was better. The findings also revealed that the predictive ability of NC for CV events was better in men, and was comparable to that of BMI or WC.

The global obesity epidemic is now well established, with a nearly doubling increase in prevalence between 1980 and 2015 and a continuous increase in most countries [4]. In addition to promoting the development of CVD, obesity also contributes to adverse clinical outcomes [24, 25]. BMI is the most commonly used indicator of obesity. However, several studies have suggested that people with similar
BMI may have different body fat distribution, and therefore, different CVD risks [26]. WC, an indicator of central obesity, has been used in the diagnosis of metabolic syndrome and correlates well with CV events [27]. However, some confounding factors, such as the measurement location, breathing rate, and food intake, affect the accuracy of measurement to a certain extent [28]. Therefore, identification of other simple measures that reflect obesity and fat distribution may help to better predict the occurrence of CV events in more dimensions.

NC is a new measurement index that is simple, saves time, has little variability, and can reflect upper-body fat content [9]. Emerging evidence has supported the link between NC and multiple cardiovascular risk factors such as diabetes, hypertension, and subclinical atherosclerosis [29, 30]. A cross-section study, conducted in 4152 participants aged 35-74 years, demonstrated that NC was closely correlated with common carotid intima-media thickness [31]. Furthermore, SCORE risk model was used to estimate fatal atherosclerotic CVD events basing on prospective European trials and well recommended by the ESC. Asil et al. conducted a cross-section study involving 232 patients who applied to cardiology clinic with CVD risk factors, and found that NC was closely associated with 10-year CVD mortality in SCORE risk. Moreover, NC was discovered to have the strongest correlation with SCORE risk compared with BMI and WC, indicating its potential in clinical practice [32].

Recently, several longitudinal studies have explored the relationship between NC and CV events. In a follow-up study of 3299 patients with type 2 diabetes, Yang et al. [33] reported that patients with baseline high NC (NC ≥ 75%) had a higher risk of CV
events than patients with low NC. Another study of 12,151 patients with high CVD risks who presented to a cardiology department showed that those in the upper tertile of baseline NC had a higher risk of developing long-term CV events than those in the lower tertile [34]. However, there is still a lack of longitudinal studies on the relationship between NC and CV events in Chinese communities. Accordingly, we conducted our prospective study in middle-aged and elderly residents, and NC cutoff point was derived from our previous community-based study [15]. We found a 59% increased risk of CV events in subjects with baseline high NC after a mean follow-up of 7.6 years, which was consistent with two studies above.

However, not all prospective studies have shown a significant correlation between NC and CV events. The Jackson Heart Study conducted an 11-year follow-up of 5290 participants from American communities and found no significant association in the fully adjusted model [13]. Such inconsistencies between studies may be attributable to differences in primary outcomes. Our study focused on the joint effects of clinical events, including IHD and cerebrovascular events, while the Jackson Heart Study focused on the “net effect” of NC on cardiac death, myocardial infarction, heart failure, and stroke. Age, which is an important risk factor for CVD, may be another reason for these inconsistencies. In comparison with the Jackson Heart cohort, our participants were middle-aged and elderly with higher average age (60.1 ± 5.1 years vs 55.4 ± 12.8 years).

Recent studies have revealed that NC is associated with local body fat, especially
visceral fat accumulation [35]. Our previous study in 1943 Chinese community residents demonstrated that NC had similar efficacy as WC as a powerful marker of visceral fat content determined by magnetic resonance imaging (MRI) [15]. To verify whether NC had the same capacity for predicting the risk of CV events as BMI or WC, we compared the predictive ability of baseline high NC, BMI ≥ 25 kg/m², and high WC for CV events in the total population, men and women, and found no differences. Our findings showed that NC had similar capacity for identifying CV events as BMI or WC. In addition, our study explored whether the predictive ability of NC for CV events showed a significant sex-related difference. A sex-based stratified analysis found that the predictive ability of NC was greater in men, which might be attributed to the differences in the onset of CV events between men and women. A global case-control study conducted in 52 countries demonstrated that acute myocardial infarction occurred 5-10 years earlier in men than in women across all regions [36]. Considering the similar age distribution between men and women in our data, increasing the follow-up time may better reflect the long-term relationship between NC and CV events in women.

The mechanisms underlying the association of NC with the development of CVD remain unclear. Some studies have suggested that dysfunction of neck adipose tissue may be involved in the pathogenesis of CVD. In addition to serving as a support for the vessel wall, neck adipose tissue is also an important perivascular adipose tissue. Abnormal function of perivascular adipose tissue could trigger an inflammatory response, promote oxidative stress, reduce the production of adipocyte-derived
relaxing factors (ADRFs), and increase the activation of cytokines and chemokines [37, 38]. All of these factors may link dysfunctional perivascular fat to metabolic disorders such as atherosclerosis, hypertension, and diabetes, and ultimately contribute to the occurrence of CV events.

This study had several limitations. First, this was a single-center study that included only community-based population in Shanghai, potentially causing some selection bias. Further studies are required to confirm these findings in population from different regions and ethnic groups. Second, lifestyle variables were not included in the analysis and will be supplemented in the future.

In conclusion, this prospective cohort study based on middle-aged and elderly population in Chinese communities revealed a significant and positive role of NC in CV events, especially IHD. The predictive ability of NC was better in men than that in women.

References


**Figure legends**

**Fig. 1** Flow-chart of the study population

**Fig. 2** Cumulative curves for the incidence of cardiovascular events in total population (A), men (B) and women (C). The red line represents the number of participants with high NC. The blue line represents the number of participants with low NC.
Fig. 3 Comparison of predictive ability for cardiovascular events using NC, BMI and WC cutoff in men and women.
Table 1 Baseline characteristics of participants according to development of CV events at follow up

<table>
<thead>
<tr>
<th>Variables</th>
<th>Total</th>
<th>Non-CV events</th>
<th>CV events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men/Women (n)</td>
<td>626/809</td>
<td>543/744</td>
<td>83/65**</td>
</tr>
<tr>
<td>Age (years)</td>
<td>60.1 ± 5.1</td>
<td>59.9 ± 5.0</td>
<td>61.5 ± 5.2  **</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.1 ± 3.2</td>
<td>24.0 ± 3.1</td>
<td>25.4 ± 3.6  **</td>
</tr>
<tr>
<td>NC (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>38.0 ± 2.3</td>
<td>37.9 ± 2.2</td>
<td>38.9 ± 2.6  **</td>
</tr>
<tr>
<td>Women</td>
<td>33.7 ± 2.0</td>
<td>33.6 ± 2.0</td>
<td>34.3 ± 2.1  *</td>
</tr>
<tr>
<td>WC (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>87.7 ± 8.8</td>
<td>87.3 ± 8.6</td>
<td>90.6 ± 9.4  **</td>
</tr>
<tr>
<td>Women</td>
<td>82.0 ± 8.9</td>
<td>81.7 ± 8.8</td>
<td>85.3 ± 9.2  **</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>130 (120-146)</td>
<td>130 (120-144)</td>
<td>142 (127-155) **</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>80 (73-86)</td>
<td>80 (73-86)</td>
<td>82 (75-90)  **</td>
</tr>
<tr>
<td>FPG (mmol/L)</td>
<td>5.26 (4.91-5.79)</td>
<td>5.25 (4.91-5.74)</td>
<td>5.46 (4.93-6.32) **</td>
</tr>
<tr>
<td>2hPG (mmol/L)</td>
<td>7.41 (6.03-9.64)</td>
<td>7.33 (5.99-9.52)</td>
<td>8.62 (6.40-11.5) **</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.70 (5.40-6.00)</td>
<td>5.70 (5.40-5.95)</td>
<td>5.80 (5.50-6.40) **</td>
</tr>
<tr>
<td>FINS (mU/L)</td>
<td>8.00 (5.72-11.4)</td>
<td>7.94 (5.67-11.2)</td>
<td>9.05 (6.41-13.7) **</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.95 (1.31-2.96)</td>
<td>1.91 (1.29-2.88)</td>
<td>2.30 (1.53-3.48) **</td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>5.11 (4.53-5.75)</td>
<td>5.10 (4.53-5.74)</td>
<td>5.17 (4.54-5.77)</td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>1.36 (0.95-1.93)</td>
<td>1.35 (0.94-1.88)</td>
<td>1.57 (1.14-2.25) **</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>1.29 (1.10-1.57)</td>
<td>1.30 (1.11-1.59)</td>
<td>1.24 (1.04-1.45) *</td>
</tr>
<tr>
<td>LDL-C (mmol/L)</td>
<td>3.14 (2.64-3.66)</td>
<td>3.14 (2.63-3.66)</td>
<td>3.20 (2.67-3.69)</td>
</tr>
<tr>
<td>Beyond high school education, n (%)</td>
<td>883 (61.53%)</td>
<td>794 (61.69%)</td>
<td>89 (60.14%)</td>
</tr>
<tr>
<td>Current smoker, n (%)</td>
<td>316 (22.02%)</td>
<td>279 (21.68%)</td>
<td>37 (25.00%)</td>
</tr>
<tr>
<td>Family history of CVD, n (%)</td>
<td>494 (34.43%)</td>
<td>432 (33.57%)</td>
<td>62 (41.89%)</td>
</tr>
<tr>
<td>Overweight or obesity, n (%)</td>
<td>515 (35.89%)</td>
<td>439 (34.11%)</td>
<td>76 (51.35%) **</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>304 (21.18%)</td>
<td>251 (19.50%)</td>
<td>53 (35.81%) **</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>729 (50.80%)</td>
<td>626 (48.64%)</td>
<td>103 (69.59%) **</td>
</tr>
<tr>
<td>Dyslipidemia, n (%)</td>
<td>939 (65.44%)</td>
<td>834 (64.80%)</td>
<td>105 (70.94%)</td>
</tr>
<tr>
<td>Use of antidiabetic agents, n (%)</td>
<td>134 (9.34%)</td>
<td>106 (8.24%)</td>
<td>28 (18.92%) **</td>
</tr>
<tr>
<td>Use of antihypertensive agents, n (%)</td>
<td>403 (28.08%)</td>
<td>341 (26.50%)</td>
<td>62 (41.89%) **</td>
</tr>
<tr>
<td>Use of lipid-lowering agents, n (%)</td>
<td>176 (12.26%)</td>
<td>152 (11.81%)</td>
<td>24 (16.22%)</td>
</tr>
</tbody>
</table>

*P < 0.05, variables in participants with CV events vs variables in participants without CV events;

**P < 0.01, variables in participants with CV events vs variables in participants without CV events.

Abbreviation: CV events, cardiovascular events; BMI, body mass index; WC, waist circumference; NC, neck circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; 2hPG, 2h plasma glucose; HbA1c, glycated hemoglobin A1c; FINS, fasting insulin; HOMA-IR, homeostasis model assessment-insulin resistance index; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; CVD, cardiovascular disease.
### Table 2 Multivariate Cox proportional-hazards analysis showing hazard ratios of NC with CV events

<table>
<thead>
<tr>
<th>Variables</th>
<th>Per 1 SD b increase</th>
<th>Low NC c</th>
<th>High NC d</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Total</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events/Participants, n</td>
<td>148/1435</td>
<td>70/904</td>
<td>78/531</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.69 (1.35, 2.11)</td>
<td>1.00</td>
<td>1.90 (1.38, 2.63)</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.45 (1.15, 1.83)</td>
<td>1.00</td>
<td>1.59 (1.14, 2.22)</td>
</tr>
<tr>
<td><strong>Men</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events/Participants, n</td>
<td>83/626</td>
<td>34/369</td>
<td>49/257</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.52 (1.23, 1.87)</td>
<td>1.00</td>
<td>2.20 (1.42, 3.41)</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.37 (1.10, 1.71)</td>
<td>1.00</td>
<td>1.90 (1.21, 2.98)</td>
</tr>
<tr>
<td><strong>Women</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events/Participants, n</td>
<td>65/809</td>
<td>36/535</td>
<td>29/274</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.35 (1.07, 1.69)</td>
<td>1.00</td>
<td>1.59 (0.97, 2.59)</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.19 (0.94, 1.52)</td>
<td>1.00</td>
<td>1.25 (0.75, 2.07)</td>
</tr>
</tbody>
</table>

Model 1, adjusted for age. Model 2, adjusted for age, smoking status, education attainment, family history of CVD, diabetes, hypertension, and dyslipidemia.

a For the total population, models were further adjusted for sex.

b 1 SD: for total population 3.1 cm; men 2.3 cm; women 2.0 cm.

c Low NC, NC < 38.5 cm for men and NC < 34.5 cm for women.

d High NC, NC ≥ 38.5 cm for men and NC ≥ 34.5 cm for women.

Abbreviation: NC, neck circumference; CV events, cardiovascular events; CVD, cardiovascular disease.
### Table 3 The association between NC and the risk of IHD or cerebrovascular events

<table>
<thead>
<tr>
<th>Variables</th>
<th>IHD</th>
<th>Cerebrovascular events</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Per 1 SD&lt;sup&gt;b&lt;/sup&gt; increase</td>
<td>Low NC&lt;sup&gt;c&lt;/sup&gt;</td>
<td>High NC&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td>Total&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events/Participants, n</td>
<td>62/1435</td>
<td>24/904</td>
<td>38/531</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.97 (1.42, 2.74)</td>
<td>1.00</td>
<td>2.62 (1.57, 4.37)</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.65 (1.17, 2.32)</td>
<td>1.00</td>
<td>2.19 (1.30, 3.70)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events/Participants, n</td>
<td>39/626</td>
<td>11/369</td>
<td>28/257</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.77 (1.32, 2.37)</td>
<td>1.00</td>
<td>3.84 (1.91, 7.71)</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.68 (1.23, 2.28)</td>
<td>1.00</td>
<td>3.78 (1.84, 7.75)</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events/Participants, n</td>
<td>23/809</td>
<td>13/535</td>
<td>10/274</td>
</tr>
<tr>
<td>Model 1</td>
<td>1.35 (0.92, 1.99)</td>
<td>1.00</td>
<td>1.46 (0.64, 3.34)</td>
</tr>
<tr>
<td>Model 2</td>
<td>1.08 (0.72, 1.64)</td>
<td>1.00</td>
<td>0.99 (0.42, 2.31)</td>
</tr>
</tbody>
</table>

Model 1, adjusted for age.

Model 2, adjusted for age, smoking status, education attainment, family history of CVD, diabetes, hypertension, and dyslipidemia.

<sup>a</sup> For the total population, models were further adjusted for sex.

<sup>b</sup> 1SD: for total population 3.1 cm; men 2.3 cm; women 2.0 cm.

<sup>c</sup> Low NC, NC < 38.5 cm for men and NC < 34.5 cm for women.

<sup>d</sup> High NC, NC ≥ 38.5 cm for men and NC ≥ 34.5 cm for women.

Abbreviation: NC, neck circumference, IHD, ischemic heart disease; CVD, cardiovascular disease.
Participants at baseline
(October 2013 to October 2014)
(n=2433)

Excluded at baseline:
1. Malignant tumors (n=27)
2. Treatment with steroids or throxine (n=43)
3. Thyroid dysfunction or a known history of hyperthyroidism or hypothyroidism (n=94)
4. Liver or kidney dysfunction (n=23)
   1. History of cardiovascular or cerebrovascular diseases (n=43)
   2. Aged <50 years (n=298)
   3. Premenopausal women (n=79)

Recruited in the follow-up investigation
(October 2021 to February 2022)
(n=1826)

Excluded at follow-up:
1. Loss to follow-up due to migration (n=358)
2. Non-CVD death (n=33)

Finally enrolled
(n=1436)

Non-CV events
(n=1287)

CV events
(n=148)
(A) P < 0.05 for the predictive rate of NC vs. BM or total population

(B) P < 0.05 for the predictive rate of NC vs. BM in men

(C) P < 0.05 for the predictive rate of NC vs. BM in women

(D) P > 0.05 for the predictive rate of NC vs. NC in total population

(E) P > 0.05 for the predictive rate of NC vs. BM in WBC mean

(F) P > 0.05 for the predictive rate of NC vs. NC in women
Highlights:

- Neck circumference is significantly associated with the risk of future cardiovascular events in middle-aged and elderly population in the community.
- Neck circumference is a better predictive tool for ischemic heart disease.
- The predictive ability of neck circumference was better in men than that in women.
ICMJE DISCLOSURE FORM

Date: 16/5/2022

Your Name: Yuqian Bao

Manuscript Title: Neck circumference for predicting the occurrence of future cardiovascular events in a community-based cohort: A 7.6-year longitudinal study

Manuscript Number (if known): Click or tap here to enter text.

In the interest of transparency, we ask you to disclose all relationships/activities/interests listed below that are related to the content of your manuscript. “Related” means any relation with for-profit or not-for-profit third parties whose interests may be affected by the content of the manuscript. Disclosure represents a commitment to transparency and does not necessarily indicate a bias. If you are in doubt about whether to list a relationship/activity/interest, it is preferable that you do so.

The author’s relationships/activities/interests should be defined broadly. For example, if your manuscript pertains to the epidemiology of hypertension, you should declare all relationships with manufacturers of antihypertensive medication, even if that medication is not mentioned in the manuscript.

In item #1 below, report all support for the work reported in this manuscript without time limit. For all other items, the time frame for disclosure is the past 36 months.

<table>
<thead>
<tr>
<th></th>
<th>Name all entities with whom you have this relationship or indicate none (add rows as needed)</th>
<th>Specifications/Comments (e.g., if payments were made to you or to your institution)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Time frame: Since the initial planning of the work**

1. All support for the present manuscript (e.g., funding, provision of study materials, medical writing, article processing charges, etc.)
   - None

No time limit for this item.

**Time frame: past 36 months**
<table>
<thead>
<tr>
<th></th>
<th>Name all entities with whom you have this relationship or indicate none (add rows as needed)</th>
<th>Specifications/Comments (e.g., if payments were made to you or to your institution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grants or contracts from any entity (if not indicated in item #1 above).</td>
<td>☒ None</td>
</tr>
<tr>
<td>3</td>
<td>Royalties or licenses</td>
<td>☒ None</td>
</tr>
<tr>
<td>4</td>
<td>Consulting fees</td>
<td>☒ None</td>
</tr>
<tr>
<td>5</td>
<td>Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events</td>
<td>☒ None</td>
</tr>
<tr>
<td>6</td>
<td>Payment for expert testimony</td>
<td>☒ None</td>
</tr>
<tr>
<td>Name all entities with whom you have this relationship or indicate none (add rows as needed)</td>
<td>Specifications/Comments (e.g., if payments were made to you or to your institution)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td><strong>7</strong> Support for attending meetings and/or travel</td>
<td>☒ None</td>
<td></td>
</tr>
<tr>
<td><strong>8</strong> Patents planned, issued or pending</td>
<td>☒ None</td>
<td></td>
</tr>
<tr>
<td><strong>9</strong> Participation on a Data Safety Monitoring Board or Advisory Board</td>
<td>☐ None</td>
<td></td>
</tr>
<tr>
<td><strong>10</strong> Leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid</td>
<td>☒ None</td>
<td></td>
</tr>
<tr>
<td><strong>11</strong> Stock or stock options</td>
<td>☒ None</td>
<td></td>
</tr>
<tr>
<td><strong>12</strong> Receipt of equipment, materials, drugs, medical writing,</td>
<td>☒ None</td>
<td></td>
</tr>
<tr>
<td>Gifts or other services</td>
<td>Specifications/Comments (e.g., if payments were made to you or to your institution)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>13</strong> Other financial or non-financial interests</td>
<td>☒ None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Please place an “X” next to the following statement to indicate your agreement:**

☒ | I certify that I have answered every question and have not altered the wording of any of the questions on this form.