Advertisement

The associations between fasting glucose, lipids and uric acid levels strengthen with the decile of uric acid increase and differ by sex

  • Author Footnotes
    1 The two authors contributed equally to this report.
    Xiao Wang
    Footnotes
    1 The two authors contributed equally to this report.
    Affiliations
    Department of Urology Surgery, The Second Hospital of Jiaxing City, 1518 North Ring Road, Nanhu District, Jiaxing City, Zhejiang Province, PR China
    Search for articles by this author
  • Author Footnotes
    1 The two authors contributed equally to this report.
    Shan Zhong
    Footnotes
    1 The two authors contributed equally to this report.
    Affiliations
    Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, Shanghai, 200040, PR China
    Search for articles by this author
  • Xiao Guo
    Correspondence
    Corresponding author.
    Affiliations
    Department of Urology Surgery, The Second Hospital of Jiaxing City, 1518 North Ring Road, Nanhu District, Jiaxing City, Zhejiang Province, PR China
    Search for articles by this author
  • Author Footnotes
    1 The two authors contributed equally to this report.
Published:September 14, 2022DOI:https://doi.org/10.1016/j.numecd.2022.09.004

      Highlights

      • HDL-C levels were negatively associated with serum uric acid levels (UAl).
      • The associations are stable in males but strengthened in females with UAl increase.
      • Non-HDL-C and TG levels were positively associated with serum UAl.
      • The associations strengthened in both sexes across deciles of UAl from low to high.
      • Glucose was positively associated with UAl in females.

      Abstract

      Background and aim

      Serum lipids, glucose and uric acid are well-known risk factors for metabolic syndrome and cardiovascular diseases; however, how serum uric acid levels are associated with fasting glucose and lipid levels remains to be evaluated.

      Methods and results

      A cross-sectional study was performed in 104,328 males and 74,916 females. Quantile regression analyses were adopted to optimally fit the associations between levels of uric acid, lipids and glucose. Fasting high-density lipoprotein cholesterol (HDL-C) levels were negatively associated with serum uric acid levels; the associations remained stable in males but strengthened in females with increasing uric acid concentrations. Non-HDL-C and triglyceride (TG) levels were positively associated with serum uric acid levels; the associations also strengthened across deciles of uric acid levels from low to high. Fasting glucose levels were positively associated with uric acid levels in both sexes except in males in the 1st and 2nd deciles of uric acid concentrations; the association coefficients for females were higher than coefficients in males in each decile of uric acid levels. All associations had distinguishable patterns by sex except non-HDL-C, which was associated with uric acid levels with relatively similar trends between sexes. Adjustment for known confounding factors only slightly altered the above associations.

      Conclusions

      Fasting serum uric acid levels are associated with fasting levels of HDL-C, non-HDL-C, TG and glucose; the associations strengthened with the deciles of uric acid increase and displayed non-negligible sex differences.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Estiverne C.
        • Mandal A.K.
        • Mount D.B.
        Molecular pathophysiology of uric acid homeostasis.
        Semin Nephrol. 2020 Nov; 40: 535-549https://doi.org/10.1016/j.semnephrol.2020.12.006
        • Lima W.G.
        • Martins-Santos M.E.
        • Chaves V.E.
        Uric acid as a modulator of glucose and lipid metabolism.
        Biochimie. 2015 Sep; 116: 17-23https://doi.org/10.1016/j.biochi.2015.06.025
        • Mandal A.K.
        • Mount D.B.
        The molecular physiology of uric acid homeostasis.
        Annu Rev Physiol. 2015; 77: 323-345https://doi.org/10.1146/annurev-physiol-021113-170343
        • Bobulescu I.A.
        • Moe O.W.
        Renal transport of uric acid: evolving concepts and uncertainties.
        Adv Chronic Kidney Dis. 2012 Nov; 19: 358-371https://doi.org/10.1053/j.ackd.2012.07.009
        • McCracken E.
        • Monaghan M.
        • Sreenivasan S.
        Pathophysiology of the metabolic syndrome.
        Clin Dermatol. 2018 Jan-Feb; 36: 14-20https://doi.org/10.1016/j.clindermatol.2017.09.004
        • Huang P.L.
        A comprehensive definition for metabolic syndrome.
        Dis Model Mech. 2009 May-Jun; 2: 231-237https://doi.org/10.1242/dmm.001180
        • Borghi C.
        • Agabiti-Rosei E.
        • Johnson R.J.
        • Kielstein J.T.
        • Lurbe E.
        • Mancia G.
        • Redon J.
        • Stack A.G.
        • Tsioufis K.P.
        Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease.
        Eur J Intern Med. 2020 Oct; 80: 1-11https://doi.org/10.1016/j.ejim.2020.07.006
        • Cameron A.J.
        • Shaw J.E.
        • Zimmet P.Z.
        The metabolic syndrome: prevalence in worldwide populations.
        Endocrinol Metab Clin North Am. 2004 Jun; 33 (table of contents): 351-375https://doi.org/10.1016/j.ecl.2004.03.005
        • Saklayen M.G.
        The global epidemic of the metabolic syndrome.
        Curr Hypertens Rep. 2018 Feb 26; 20: 12https://doi.org/10.1007/s11906-018-0812-z
        • Bozkurt B.
        • Aguilar D.
        • Deswal A.
        • Dunbar S.B.
        • Francis G.S.
        • Horwich T.
        • Jessup M.
        • Kosiborod M.
        • Pritchett A.M.
        • Ramasubbu K.
        • Rosendorff C.
        • Yancy C.
        American heart association heart failure and transplantation committee of the council on clinical cardiology; council on cardiovascular surgery and anesthesia; council on cardiovascular and stroke nursing; council on hypertension; and council on quality and outcomes research. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American heart association.
        Circulation. 2016 Dec 6; 134: e535-e578https://doi.org/10.1161/CIR.0000000000000450
        • Hajhosseiny R.
        • Matthews G.K.
        • Lip G.Y.
        Metabolic syndrome, atrial fibrillation, and stroke: tackling an emerging epidemic.
        Heart Rhythm. 2015 Nov; 12: 2332-2343https://doi.org/10.1016/j.hrthm.2015.06.038
        • Son M.
        • Seo J.
        • Yang S.
        Association between dyslipidemia and serum uric acid levels in Korean adults: korea national health and nutrition examination survey 2016-2017.
        PLoS One. 2020 Feb 14; 15e0228684https://doi.org/10.1371/journal.pone.0228684
        • Peng T.C.
        • Wang C.C.
        • Kao T.W.
        • Chan J.Y.
        • Yang Y.H.
        • Chang Y.W.
        • Chen W.L.
        Relationship between hyperuricemia and lipid profiles in US adults.
        Biomed Res Int. 2015; 2015: 127596https://doi.org/10.1155/2015/127596
        • Desideri G.
        • Castaldo G.
        • Lombardi A.
        • Mussap M.
        • Testa A.
        • Pontremoli R.
        • Punzi L.
        • Borghi C.
        Is it time to revise the normal range of serum uric acid levels?.
        Eur Rev Med Pharmacol Sci. 2014; 18: 1295-1306
        • Lanaspa M.A.
        • Sanchez-Lozada L.G.
        • Cicerchi C.
        • Li N.
        • Roncal-Jimenez C.A.
        • Ishimoto T.
        • Le M.
        • Garcia G.E.
        • Thomas J.B.
        • Rivard C.J.
        • Andres-Hernando A.
        • Hunter B.
        • Schreiner G.
        • Rodriguez-Iturbe B.
        • Sautin Y.Y.
        • Johnson R.J.
        Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver.
        PLoS One. 2012; 7e47948https://doi.org/10.1371/journal.pone.0047948
        • Lanaspa M.A.
        • Sanchez-Lozada L.G.
        • Choi Y.J.
        • Cicerchi C.
        • Kanbay M.
        • Roncal-Jimenez C.A.
        • Ishimoto T.
        • Li N.
        • Marek G.
        • Duranay M.
        • Schreiner G.
        • Rodriguez-Iturbe B.
        • Nakagawa T.
        • Kang D.H.
        • Sautin Y.Y.
        • Johnson R.J.
        Uric acid induces hepatic steatosis by generation of mitochondrial oxidative stress: potential role in fructose-dependent and -independent fatty liver.
        J Biol Chem. 2012 Nov 23; 287: 40732-40744https://doi.org/10.1074/jbc.M112.399899
        • Nakagawa T.
        • Hu H.
        • Zharikov S.
        • Tuttle K.R.
        • Short R.A.
        • Glushakova O.
        • Ouyang X.
        • Feig D.I.
        • Block E.R.
        • Herrera-Acosta J.
        • Patel J.M.
        • Johnson R.J.
        A causal role for uric acid in fructose-induced metabolic syndrome.
        Am J Physiol Renal Physiol. 2006 Mar; 290: F625-F631https://doi.org/10.1152/ajprenal.00140.2005
        • Sánchez-Lozada L.G.
        • Tapia E.
        • Bautista-García P.
        • Soto V.
        • Avila-Casado C.
        • Vega-Campos I.P.
        • Nakagawa T.
        • Zhao L.
        • Franco M.
        • Johnson R.J.
        Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome.
        Am J Physiol Renal Physiol. 2008 Apr; 294: F710-F718https://doi.org/10.1152/ajprenal.00454.2007
        • Keenan T.
        • Blaha M.J.
        • Nasir K.
        • Silverman M.G.
        • Tota-Maharaj R.
        • Carvalho J.A.
        • Conceição R.D.
        • Blumenthal R.S.
        • Santos R.D.
        Relation of uric acid to serum levels of high-sensitivity C-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis.
        Am J Cardiol. 2012 Dec 15; 110: 1787-1792https://doi.org/10.1016/j.amjcard.2012.08.012
        • Ford E.S.
        • Li C.
        • Cook S.
        • Choi H.K.
        Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents.
        Circulation. 2007 May 15; 115: 2526-2532https://doi.org/10.1161/CIRCULATIONAHA.106.657627
        • Zhang Y.
        • Wang Y.
        Associations between the HDL-C/ApoA-I ratio and fasting glucose levels differ by glucose deciles, HDL-C/ApoA-I ratio ranges and sex.
        Diabetes Res Clin Pract. 2022 Jul 22; 190: 110021https://doi.org/10.1016/j.diabres.2022.110021
        • Hu W.
        • Zhang P.
        • Su Q.
        • Li D.
        • Hang Y.
        • Ye X.
        • Guan P.
        • Dong J.
        • Lu Y.
        Peripheral leukocyte counts vary with lipid levels, age and sex in subjects from the healthy population.
        Atherosclerosis. 2020 Sep; 308: 15-21https://doi.org/10.1016/j.atherosclerosis.2020.07.009
        • Staffa S.J.
        • Kohane D.S.
        • Zurakowski D.
        Quantile regression and its applications: a primer for anesthesiologists.
        Anesth Analg. 2019 Apr; 128: 820-830https://doi.org/10.1213/ANE.0000000000004017
        • Smith Jr., S.C.
        • Allen J.
        • Blair S.N.
        • Bonow R.O.
        • Brass L.M.
        • Fonarow G.C.
        • Grundy S.M.
        • Hiratzka L.
        • Jones D.
        • Krumholz H.M.
        • Mosca L.
        • Pearson T.
        • Pfeffer M.A.
        • Taubert K.A.
        • AHA
        • ACC
        • National Heart
        • Lung, and Blood Institute
        AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update endorsed by the National Heart, Lung, and Blood Institute.
        J Am Coll Cardiol. 2006 May 16; 47: 2130-2139https://doi.org/10.1016/j.jacc.2006.04.026
        • Kratzer J.T.
        • Lanaspa M.A.
        • Murphy M.N.
        • Cicerchi C.
        • Graves C.L.
        • Tipton P.A.
        • Ortlund E.A.
        • Johnson R.J.
        • Gaucher E.A.
        Evolutionary history and metabolic insights of ancient mammalian uricases.
        Proc Natl Acad Sci U S A. 2014 Mar 11; 111: 3763-3768https://doi.org/10.1073/pnas.1320393111
        • Zhu Y.
        • Hu Y.
        • Huang T.
        • Zhang Y.
        • Li Z.
        • Luo C.
        • Luo Y.
        • Yuan H.
        • Hisatome I.
        • Yamamoto T.
        • Cheng J.
        High uric acid directly inhibits insulin signalling and induces insulin resistance.
        Biochem Biophys Res Commun. 2014 May 16; 447: 707-714https://doi.org/10.1016/j.bbrc.2014.04.080
        • Katsiki N.
        • Dimitriadis G.D.
        • Mikhailidis D.P.
        Serum uric acid and diabetes: from pathophysiology to cardiovascular disease.
        Curr Pharm Des. 2021; 27: 1941-1951https://doi.org/10.2174/1381612827666210104124320
        • Alqahtani S.A.M.
        • Awan Z.A.
        • Alasmary M.Y.
        • Al Amoudi S.M.
        Association between serum uric acid with diabetes and other biochemical markers.
        J Family Med Prim Care. 2022 Apr; 11: 1401-1409https://doi.org/10.4103/jfmpc.jfmpc_1833_21
        • Jacobson T.A.
        • Ito M.K.
        • Maki K.C.
        • Orringer C.E.
        • Bays H.E.
        • Jones P.H.
        • McKenney J.M.
        • Grundy S.M.
        • Gill E.A.
        • Wild R.A.
        • Wilson D.P.
        • Brown W.V.
        National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report.
        J Clin Lipidol. 2015 Mar-Apr; 9: 129-169https://doi.org/10.1016/j.jacl.2015.02.003
        • Pownall H.J.
        • Rosales C.
        • Gillard B.K.
        • Gotto Jr., A.M.
        High-density lipoproteins, reverse cholesterol transport and atherogenesis.
        Nat Rev Cardiol. 2021 Oct; 18: 712-723https://doi.org/10.1038/s41569-021-00538-z
        • Kuwabara M.
        • Borghi C.
        • Cicero A.F.G.
        • Hisatome I.
        • Niwa K.
        • Ohno M.
        • Johnson R.J.
        • Lanaspa M.A.
        Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: a five-year cohort study in Japan.
        Int J Cardiol. 2018 Jun 15; 261: 183-188https://doi.org/10.1016/j.ijcard.2018.03.045
        • Cicerchi C.
        • Li N.
        • Kratzer J.
        • Garcia G.
        • Roncal-Jimenez C.A.
        • Tanabe K.
        • Hunter B.
        • Rivard C.J.
        • Sautin Y.Y.
        • Gaucher E.A.
        • Johnson R.J.
        • Lanaspa M.A.
        Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids.
        FASEB J. 2014 Aug; 28: 3339-3350https://doi.org/10.1096/fj.13-243634