Advertisement

Intake of legumes and cardiovascular disease: A systematic review and dose–response meta-analysis

  • Vânia Mendes
    Affiliations
    Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
    Search for articles by this author
  • Aikaterini Niforou
    Affiliations
    Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
    Search for articles by this author
  • Maria I. Kasdagli
    Affiliations
    Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
    Search for articles by this author
  • Ermolaos Ververis
    Affiliations
    Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

    European Food Safety Authority, Parma, Italy
    Search for articles by this author
  • Androniki Naska
    Correspondence
    Corresponding author. Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens 11527, Greece.
    Affiliations
    Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
    Search for articles by this author
Published:October 20, 2022DOI:https://doi.org/10.1016/j.numecd.2022.10.006

      Highlights

      • High legume intake was inversely associated with CVD and CHD, but not with stroke.
      • Regular weekly intakes of legumes are associated with a decrease in CHD risk.
      • The benefit for CHD appears to level off at intakes higher than 400 g/week.
      • Further research is needed to understand the role of legumes in stroke subtypes.

      Abstract

      Aims

      To summarize the evidence on the association between the intake of legumes and the risk of cardiovascular disease (CVD) overall, coronary heart disease (CHD) and stroke, and to identify optimal intake levels for reduced disease risk through a systematic review and dose–response meta-analysis.

      Data synthesis

      We have systematically searched PubMed, Scopus and Web of Science up to March, 2022 for the retrieval of intervention and observational studies (PROSPERO Reg. number: CRD42021247565). Pooled relative risks (RRs) comparing extreme categories of intake were computed using random-effects models. One-stage dose–response meta-analyses were also performed using random-effects models. 22 831 articles were screened resulting in 26 eligible observational studies (21 prospective cohort and 5 case–control studies). When comparing extreme categories of intake, the consumption of legumes was inversely associated with CVD (n = 25: RR = 0.94; 95%CI:0.89,0.99) and CHD (n = 16: RR = 0.90; 95%CI:0.85,0.96), but not with stroke (n = 9: RR = 1.00; 95%CI:0.93,1.08). We further found evidence for an inverse dose–response association with CHD, increasing in magnitude up to an intake of 400 g/week, after which the benefit seems to level-off.

      Conclusions

      The intake of legumes was associated with a reduced risk of CVD and CHD, but not with stroke, among individuals with the highest consumption levels. An intake level of 400 g/week seemed to provide the optimal cardiovascular benefit. Further research is needed to better understand the role of legumes in stroke subtypes.

      Keywords

      Acronyms:

      BMI (Body Mass Index), CI (Confidence interval), CVD (Cardiovascular disease), CHD (Coronary heart disease), FFQ (Food frequency questionnaire), HR (Hazard Ratio), LDL (Low-density lipoprotein), MRI (Magnetic resonance imaging), OR (Odds ratio), PRISMA (Preferred reporting items for systematic reviews and meta-Analyses), PROSPERO (International prospective register of systematic reviews), ROBINS-I (Risk of bias in non-randomised studies of interventions), RCT (Randomized controlled trial), RR (Relative risk), T2D (Type 2 diabetes)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Joint FAO/WHO Food Standards Programme C.A.C.
        Codex classification of foods and animal feeds.
        1993 (Rome)
        • Mullins A.P.
        • Arjmandi B.H.
        Health benefits of plant-based nutrition: focus on beans in cardiometabolic diseases.
        Nutrients. 2021; 13: 519https://doi.org/10.3390/nu13020519
        • Rebello C.J.
        • Greenway F.L.
        • Finley J.W.
        A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities.
        Obes Rev. 2014; 15: 392-407https://doi.org/10.1111/obr.12144
        • Viguiliouk E.
        • Blanco S.
        • Kendall C.
        • Sievenpiper J.
        Can pulses play a role in improving cardiometabolic health? Evidence from systematic reviews and meta-analyses.
        Ann N Y Acad Sci. 2017; 1392: 43-57https://doi.org/10.1111/nyas.13312
        • Ferreira H.
        • Vasconcelos M.
        • Gil A.M.
        • Pinto E.
        Benefits of pulse consumption on metabolism and health: a systematic review of randomized controlled trials.
        Crit Rev Food Sci Nutr. 2021; 61: 85-96https://doi.org/10.1080/10408398.2020.1716680
        • Nchanji E.B.
        • Ageyo O.C.
        Do common beans (Phaseolus vulgaris L.) promote good health in humans? A systematic review and meta-analysis of clinical and randomized controlled trials.
        Nutrients. 2021; 13https://doi.org/10.3390/nu13113701
        • Trichopoulou A.
        • Costacou T.
        • Bamia C.
        • Trichopoulos D.
        Adherence to a Mediterranean diet and survival in a Greek population.
        N Engl J Med. 2003; 348: 2599-2608https://doi.org/10.1056/NEJMoa025039
        • Fung T.T.
        • Chiuve S.E.
        • Rexrode K.M.
        • Logroscino G.
        • Hu F.B.
        Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women.
        Arch Intern Med. 2008; 168: 713-720https://doi.org/10.1001/archinte.168.7.713
        • Krebs-Smith S.M.
        • Pannucci R.E.
        • Subar A.F.
        • Kirkpatrick S.I.
        • Lerman J.L.
        • Tooze J.A.
        • et al.
        Update of the healthy eating index: HEI-2015.
        J Acad Nutr Diet. 2018; 118: 1591-1602https://doi.org/10.1016/j.jand.2018.05.021
        • World Cancer Research Fund/American Institute for Cancer Research
        Continuous update Project expert report 2018.
        in: Recommendations and public health and policy implications. 2018
        • Mach F.
        • Baigent C.
        • Catapano A.L.
        • Koskinas K.C.
        • Casula M.
        • Badimon L.
        • et al.
        2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS).
        Eur Heart J. 2020; 41: 111-188https://doi.org/10.1093/eurheartj/ehz455
        • Lichtenstein A.H.
        • Appel L.J.
        • Vadiveloo M.
        • Hu F.B.
        • Kris-Etherton P.M.
        • Rebholz C.M.
        • et al.
        2021 Dietary guidance to improve cardiovascular health: a scientific statement from the American heart association.
        Circulation. 2021; 144: e472-e487https://doi.org/10.1161/CIR.0000000000001031
        • Roth G.A.
        • Mensah G.A.
        • Johnson C.O.
        • Addolorato G.
        • Ammirati E.
        • Baddour L.M.
        • et al.
        Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study.
        J Am Coll Cardiol. 2020; 76: 2982-3021https://doi.org/10.1016/j.jacc.2020.11.010
        • Collaborators G.B.D.D.
        Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017.
        Lancet (London, England). 2019; 393: 1958-1972https://doi.org/10.1016/S0140-6736(19)30041-8
        • Bechthold A.
        • Boeing H.
        • Schwedhelm C.
        • Hoffmann G.
        • Knüppel S.
        • Iqbal K.
        • et al.
        Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose-response meta-analysis of prospective studies.
        Crit Rev Food Sci Nutr. 2019; 59: 1071-1090https://doi.org/10.1080/10408398.2017.1392288
        • Grosso G.
        • Marventano S.
        • Yang J.
        • Micek A.
        • Pajak A.
        • Scalfi L.
        • et al.
        A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: are individual components equal?.
        Crit Rev Food Sci Nutr. 2017; 57: 3218-3232https://doi.org/10.1080/10408398.2015.1107021
        • Marventano S.
        • Izquierdo Pulido M.
        • Sánchez-González C.
        • Godos J.
        • Speciani A.
        • Galvano F.
        • et al.
        Legume consumption and CVD risk: a systematic review and meta-analysis.
        Publ Health Nutr. 2017; 20: 245-254https://doi.org/10.1017/s1368980016002299
        • Becerra-Tomás N.
        • Papandreou C.
        • Salas-Salvadó J.
        Legume consumption and cardiometabolic health.
        Adv Nutr. 2019; 10: S437-S450https://doi.org/10.1093/advances/nmz003
        • Viguiliouk E.
        • Glenn A.J.
        • Nishi S.K.
        • Chiavaroli L.
        • Seider M.
        • Khan T.
        • et al.
        Associations between dietary pulses alone or with other legumes and cardiometabolic disease outcomes: an umbrella review and updated systematic review and meta-analysis of prospective cohort studies.
        Adv Nutr. 2019; 10: S308-S319https://doi.org/10.1093/advances/nmz113
        • Messina M.J.
        Legumes and soybeans: overview of their nutritional profiles and health effects.
        Am J Clin Nutr. 1999; 70: 439s-450shttps://doi.org/10.1093/ajcn/70.3.439s
        • Page M.J.
        • McKenzie J.E.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.
        Bmj. 2021; 372: n71https://doi.org/10.1136/bmj.n71
        • Mendes V.
        • Niforou A.
        • Ververis E.
        • Naska A.
        Intake of legumes and cardiovascular disease: a systematic review and dose-response meta-analysis.
        in: PROSPERO: International prospective register of systematic reviews. 2021 (Available from:)
        • Li N.
        • Wu X.
        • Zhuang W.
        • Xia L.
        • Chen Y.
        • Zhao R.
        • et al.
        Soy and isoflavone consumption and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials in humans.
        Mol Nutr Food Res. 2020; 64: e1900751https://doi.org/10.1002/mnfr.201900751
        • Mizrahi A.
        • Knekt P.
        • Montonen J.
        • Laasksonen M.A.
        • Heliövaaea M.
        • Järvinen R.
        Plant foods and the risk of cerebrovascular diseases: a potential protection of fruit consumption.
        Br J Nutr. 2009; 102: 1075-1083https://doi.org/10.1017/s0007114509359097
        • U.S. Department of Agriculture, Agricultural Research Service
        USDA food and nutrient database for dietary studies 2017-2018.
        Food Surveys Research Group Home Page, 2020
        • Sterne J.A.C.
        • Hernán M.A.
        • Reeves B.C.
        • Savović J.
        • Berkman N.D.
        • Viswanathan M.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; 355: i4919https://doi.org/10.1136/bmj.i4919
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Contr Clin Trials. 1986; 7: 177-188https://doi.org/10.1016/0197-2456(86)90046-2
        • Borenstein M.
        • Hedges L.V.
        • Higgins J.P.
        • Rothstein H.R.
        Introduction to meta-analysis.
        J.W. Sons, 2021
        • Tufanaru C.
        • Munn Z.
        • Stephenson M.
        • Aromataris E.
        Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness.
        Int J Evid Base Healthc. 2015; 13: 196-207https://doi.org/10.1097/xeb.0000000000000065
        • Tang G.
        • Wang D.
        • Long J.
        • Yang F.
        • Si L.
        Meta-analysis of the association between whole grain intake and coronary heart disease risk.
        Am J Cardiol. 2015; 115: 625-629https://doi.org/10.1016/j.amjcard.2014.12.015
        • Yan Z.
        • Zhang X.
        • Li C.
        • Jiao S.
        • Dong W.
        Association between consumption of soy and risk of cardiovascular disease: a meta-analysis of observational studies.
        Eur J Prev Cardiol. 2017; 24: 735-747https://doi.org/10.1177/2047487316686441
        • Higgins J.P.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        Bmj. 2003; 327: 557-560https://doi.org/10.1136/bmj.327.7414.557
        • Filippini T.
        • Torres D.
        • Lopes C.
        • Carvalho C.
        • Moreira P.
        • Naska A.
        • et al.
        Cadmium exposure and risk of breast cancer: a dose-response meta-analysis of cohort studies.
        Environ Int. 2020; 142: 105879https://doi.org/10.1016/j.envint.2020.105879
        • Greenland S.
        • Longnecker M.P.
        Methods for trend estimation from summarized dose-response data, with applications to meta-analysis.
        Am J Epidemiol. 1992; 135: 1301-1309https://doi.org/10.1093/oxfordjournals.aje.a116237
        • Orsini N.
        • Li R.
        • Wolk A.
        • Khudyaknov P.
        • Spiegelman D.
        Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software.
        Am J Epidemiol. 2012; 175: 66-73https://doi.org/10.1093/aje/kwr265
        • Crippa A.
        • Discacciati A.
        • Bottai M.
        • Spiegelman D.
        • Orsini N.
        One-stage dose-response meta-analysis for aggregated data.
        Stat Methods Med Res. 2019; 28: 1579-1596https://doi.org/10.1177/0962280218773122
        • Jackson D.
        • White I.R.
        • Thompson S.G.
        Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses.
        Stat Med. 2010; 29: 1282-1297https://doi.org/10.1002/sim.3602
        • Orsini N.
        • Bellocco R.
        • Greenland S.
        Generalized least squares for trend estimation of summarized dose–response data.
        STATA J. 2006; 6: 40-57https://doi.org/10.1177/1536867X0600600103
        • Atkins J.L.
        • Whincup P.H.
        • Morris L.T.
        • Lennon L.T.
        • Papacosta O.
        • Wannamethee S.G.
        High diet quality is associated with a lower risk of cardiovascular disease and all-cause mortality in older men.
        J Nutr. 2014; 144: 673-680https://doi.org/10.3945/jn.113.186486
        • Baik I.
        • Cho N.H.
        • Kim S.H.
        • Shin C.
        Dietary information improves cardiovascular disease risk prediction models.
        Eur J Clin Nutr. 2013; 67: 25-30https://doi.org/10.1038/ejcn.2012.175
        • Bazzano L.A.
        • He J.
        • Ogden L.G.
        • Loria C.
        • Vupputuri S.
        • Myers L.
        • et al.
        Legume consumption and risk of coronary heart disease in US men and women: NHANES I Epidemiologic Follow-up Study.
        Arch Intern Med. 2001; 161: 2573-2578https://doi.org/10.1001/archinte.161.21.2573
        • Bernstein A.M.
        • Pan A.
        • Rexrode K.M.
        • Stampfer M.
        • Hu F.B.
        • Mozaffarian D.
        • et al.
        Dietary protein sources and the risk of stroke in men and women.
        Stroke. 2012; 43: 637-644https://doi.org/10.1161/strokeaha.111.633404
        • Bernstein A.M.
        • Sun Q.
        • Hu F.B.
        • Stampfer M.J.
        • Manson J.E.
        • Willett W.C.
        Major dietary protein sources and risk of coronary heart disease in women.
        Circulation. 2010; 122: 876-883https://doi.org/10.1161/circulationaha.109.915165
        • Durga A.V.
        • Manorenj S.
        Dietary pattern in adult patients with acute stroke in South India: a case-control study from a tertiary care center in Hyderabad.
        J Neurosci Rural Pract. 2019; 10: 283-293https://doi.org/10.4103/jnrp.jnrp_237_18
        • Fraser G.E.
        • Sabaté J.
        • Beeson W.L.
        • Strahan T.M.
        A possible protective effect of nut consumption on risk of coronary heart disease. The Adventist Health Study.
        Arch Intern Med. 1992; 152: 1416-1424https://doi.org/10.1001/archinte.1992.00400190054010
        • Fung T.T.
        • Isanaka S.
        • Hu F.B.
        • Willett W.C.
        International food group-based diet quality and risk of coronary heart disease in men and women.
        Am J Clin Nutr. 2018; 107: 120-129https://doi.org/10.1093/ajcn/nqx015
        • Haring B.
        • Gronroos N.
        • Nettleton J.A.
        • von Ballmoos M.C.
        • Selvin E.
        • Alonso A.
        Dietary protein intake and coronary heart disease in a large community based cohort: results from the Atherosclerosis Risk in Communities (ARIC) study [corrected].
        PLoS One. 2014; 9: e109552https://doi.org/10.1371/journal.pone.0109552
        • Haring B.
        • Misialek J.R.
        • Rebholz C.M.
        • Petruski-Ivleva N.
        • Gottesman R.F.
        • Mosley T.H.
        • et al.
        Association of dietary protein consumption with incident silent cerebral infarcts and stroke: the atherosclerosis risk in Communities (ARIC) study.
        Stroke. 2015; 46: 3443-3450https://doi.org/10.1161/strokeaha.115.010693
        • Kabagambe E.K.
        • Baylin A.
        • Ruiz-Narvarez E.
        • Siles X.
        • Campos H.
        Decreased consumption of dried mature beans is positively associated with urbanization and nonfatal acute myocardial infarction.
        J Nutr. 2005; 135: 1770-1775https://doi.org/10.1093/jn/135.7.1770
        • Kokubo Y.
        • Iso H.
        • Ishihara J.
        • Okada K.
        • Inoue M.
        • Tsugane S.
        Association of dietary intake of soy, beans, and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations: the Japan Public Health Center-based (JPHC) study cohort I.
        Circulation. 2007; 116: 2553-2562https://doi.org/10.1161/circulationaha.106.683755
        • Maher M.A.
        • Gutbi S.S.
        Assessment of dietary pattern among coronary heart disease outpatients attended El-Shaap teaching hospital, Khartoum state.
        Med Sci. 2017; 21: 160-172
        • Martínez-González M.A.
        • Fernández-Jarne E.
        • Martínez-Losa E.
        • Prado-Santamaría M.
        • Brugarolas-Brufau C.
        • Serrano-Martinez M.
        Role of fibre and fruit in the Mediterranean diet to protect against myocardial infarction: a case-control study in Spain.
        Eur J Clin Nutr. 2002; 56: 715-722https://doi.org/10.1038/sj.ejcn.1601382
        • Martínez-González M.A.
        • García-López M.
        • Bes-Rastollo M.
        • Toledo E.
        • Martínez-Lapiscina E.H.
        • Delgado-Rodriguez M.
        • et al.
        Mediterranean diet and the incidence of cardiovascular disease: a Spanish cohort.
        Nutr Metab Cardiovasc Dis. 2011; 21: 237-244https://doi.org/10.1016/j.numecd.2009.10.005
        • Mata-Fernández A.
        • Hershey M.S.
        • Pastrana-Delgado J.C.
        • Sotos-Prieto M.
        • Ruiz-Canela M.
        • Kales S.N.
        • et al.
        A Mediterranean lifestyle reduces the risk of cardiovascular disease in the “Seguimiento Universidad de Navarra” (SUN) cohort.
        Nutr Metab Cardiovasc Dis. 2021; 31: 1728-1737https://doi.org/10.1016/j.numecd.2021.02.022
        • Miller V.
        • Mente A.
        • Dehghan M.
        • Rangarajan S.
        • Zhang X.
        • Swaminathan S.
        • et al.
        Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study.
        Lancet. 2017; 390: 2037-2049https://doi.org/10.1016/s0140-6736(17)32253-5
        • Nouri F.
        • Haghighadoost F.
        • Mohammadifard N.
        • Mansourian M.
        • Sadeghi M.
        • Roohafza H.
        • et al.
        The longitudinal association between soybean and non-soybean legumes intakes and risk of cardiovascular disease: Isfahan cohort study.
        Br Food J. 2021; 123: 2864-2879https://doi.org/10.1108/bfj-08-2020-0699
        • Perez-Cornago A.
        • Crowe F.L.
        • Appleby P.N.
        • Bradbury K.E.
        • Wood A.M.
        • Jakobsen M.U.
        • et al.
        Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.
        Int J Epidemiol. 2021; 50: 212-222https://doi.org/10.1093/ije/dyaa155
        • Scarmeas N.
        • Luchsinger J.A.
        • Stern Y.
        • Gu Y.
        • He J.
        • DeCarli C.
        • et al.
        Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease.
        Ann Neurol. 2011; 69: 257-268https://doi.org/10.1002/ana.22317
        • Schröder H.
        • Salas-Salvadó J.
        • Martínez-González M.A.
        • Fíto M.
        • Corella D.
        • Estruch R.
        • et al.
        Baseline adherence to the Mediterranean diet and major cardiovascular events: prevención con Dieta Mediterránea trial.
        JAMA Intern Med. 2014; 174: 1690-1692https://doi.org/10.1001/jamainternmed.2014.3463
        • Tektonidis T.G.
        • Åkesson A.
        • Gigante B.
        • Wolk A.
        • Larsson S.C.
        A Mediterranean diet and risk of myocardial infarction, heart failure and stroke: a population-based cohort study.
        Atherosclerosis. 2015; 243: 93-98https://doi.org/10.1016/j.atherosclerosis.2015.08.039
        • Tong T.Y.N.
        • Appleby P.N.
        • Key T.J.
        • Dahm C.C.
        • Overvad K.
        • Olsen A.
        • et al.
        The associations of major foods and fibre with risks of ischaemic and haemorrhagic stroke: a prospective study of 418 329 participants in the EPIC cohort across nine European countries.
        Eur Heart J. 2020; 41: 2632-2640https://doi.org/10.1093/eurheartj/ehaa007
        • Turati F.
        • Pelucchi C.
        • Galeone C.
        • Praud D.
        • Tavani A.
        • La Vecchia C.
        Mediterranean diet and non-fatal acute myocardial infarction: a case-control study from Italy.
        Publ Health Nutr. 2015; 18: 713-720https://doi.org/10.1017/s1368980014000858
        • Yu D.
        • Zhang X.
        • Gao Y.T.
        • Li H.
        • Yang G.
        • Huang J.
        • et al.
        Fruit and vegetable intake and risk of CHD: results from prospective cohort studies of Chinese adults in Shanghai.
        Br J Nutr. 2014; 111: 353-362https://doi.org/10.1017/s0007114513002328
        • Grosso G.
        • Mistretta A.
        • Marventano S.
        • Purrello A.
        • Vitaglione P.
        • Calabrese G.
        • et al.
        Beneficial effects of the Mediterranean diet on metabolic syndrome.
        Curr Pharm Des. 2014; 20: 5039-5044https://doi.org/10.2174/1381612819666131206112144
        • Padhi E.M.T.
        • Ramdath D.D.
        A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors.
        J Funct Foods. 2017; 38: 635-643https://doi.org/10.1016/j.jff.2017.03.043
        • Bazzano L.A.
        • Thompson A.M.
        • Tees M.T.
        • Nguyen C.H.
        • Winham D.M.
        Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials.
        Nutr Metab Cardiovasc Dis. 2011; 21: 94-103https://doi.org/10.1016/j.numecd.2009.08.012
        • Ha V.
        • Sievenpiper J.L.
        • de Souza R.J.
        • Jayalath V.H.
        • Mirrahimi A.
        • Agarwal A.
        • et al.
        Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials.
        Can Med Assoc J. 2014; 186: E252-E262https://doi.org/10.1503/cmaj.131727
        • Tovar J.
        • Nilsson A.
        • Johansson M.
        • Björck I.
        Combining functional features of whole-grain barley and legumes for dietary reduction of cardiometabolic risk: a randomised cross-over intervention in mature women.
        Br J Nutr. 2014; 111: 706-714https://doi.org/10.1017/s000711451300305x
        • Frota Kde M.
        • dos Santos Filho R.D.
        • Ribeiro V.Q.
        • Arêas J.A.
        Cowpea protein reduces LDL-cholesterol and apolipoprotein B concentrations, but does not improve biomarkers of inflammation or endothelial dysfunction in adults with moderate hypercholesterolemia.
        Nutr Hosp. 2015; 31: 1611-1619https://doi.org/10.3305/nh.2015.31.4.8457
        • Escobedo A.
        • Rivera-León E.A.
        • Luévano-Contreras C.
        • Urías-Silvas J.E.
        • Luna-Vital D.A.
        • Morales-Hernández N.
        • et al.
        Common bean baked snack consumption reduces apolipoprotein B-100 levels: a randomized crossover trial.
        Nutrients. 2021; 13: 3898https://doi.org/10.3390/nu13113898
        • Olofsson S.O.
        • Borèn J.
        Apolipoprotein B: a clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis.
        J Intern Med. 2005; 258: 395-410https://doi.org/10.1111/j.1365-2796.2005.01556.x
        • Behbodikhah J.
        • Ahmed S.
        • Elyasi A.
        • Kasselman L.J.
        • de Leon J.
        • Glass A.D.
        • et al.
        Apolipoprotein B and cardiovascular disease: biomarker and potential therapeutic target.
        Metabolites. 2021; 11: 690https://doi.org/10.3390/metabo11100690
        • Brown L.
        • Rosner B.
        • Willett W.W.
        • Sacks F.M.
        Cholesterol-lowering effects of dietary fiber: a meta-analysis.
        Am J Clin Nutr. 1999; 69: 30-42https://doi.org/10.1093/ajcn/69.1.30
        • Fabbri A.D.T.
        • Schacht R.W.
        • Crosby G.A.
        Evaluation of resistant starch content of cooked black beans, pinto beans, and chickpeas.
        NFS J. 2016; 3: 8-12https://doi.org/10.1016/j.nfs.2016.02.002
        • Perez-Hernandez L.M.
        • Nugraheni K.
        • Benohoud M.
        • Sun W.
        • Hernández-Álvarez A.J.
        • Morgan M.R.A.
        • et al.
        Starch digestion enhances bioaccessibility of anti-inflammatory polyphenols from borlotti beans (Phaseolus vulgaris).
        Nutrients. 2020; 12https://doi.org/10.3390/nu12020295
        • Hafiz M.S.
        • Campbell M.D.
        • O´Mahoney L.L.
        • Holmes M.
        • Orfila C.
        • Boesch C.
        Pulse consumption improves indices of glycemic control in adults with and without type 2 diabetes: a systematic review and meta-analysis of acute and long-term randomized controlled trials.
        Eur J Nutr. 2021; https://doi.org/10.1007/s00394-021-02685-y
        • Tang J.
        • Wan Y.
        • Zhao M.
        • Zhong H.
        • Zheng J.S.
        • Feng F.
        Legume and soy intake and risk of type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies.
        Am J Clin Nutr. 2020; 111: 677-688https://doi.org/10.1093/ajcn/nqz338
        • Jayalath V.H.
        • de Souza R.J.
        • Sievenpiper J.L.
        • Ha V.
        • Chiavaroli L.
        • Mirrahimi A.
        • et al.
        Effect of dietary pulses on blood pressure: a systematic review and meta-analysis of controlled feeding trials.
        Am J Hypertens. 2014; 27: 56-64https://doi.org/10.1093/ajh/hpt155
        • Mudryj A.N.
        • Yu N.
        • Aukema H.M.
        Nutritional and health benefits of pulses.
        Appl Physiol Nutr Metab. 2014; 39: 1197-1204https://doi.org/10.1139/apnm-2013-0557
        • Kim S.J.
        • de Souza R.J.
        • Choo V.L.
        • Cozma A.I.
        • Chiavaroli L.
        • Mirrahimi A.
        • et al.
        Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials.
        Am J Clin Nutr. 2016; 103: 1213-1223https://doi.org/10.3945/ajcn.115.124677
        • Salehi-Abargouei A.
        • Saraf-Bank S.
        • Bellissimo N.
        • Azadbakht L.
        Effects of non-soy legume consumption on C-reactive protein: a systematic review and meta-analysis.
        Nutrition. 2015; 31: 631-639https://doi.org/10.1016/j.nut.2014.10.018
        • Saraf-Bank S.
        • Esmailzadeh A.
        • Faghihimani E.
        • Azadbakht L.
        Effect of non-soy legume consumption on inflammation and serum adiponectin levels among first-degree relatives of patients with diabetes: a randomized, crossover study.
        Nutrition. 2015; 31: 459-465https://doi.org/10.1016/j.nut.2014.09.015
        • Bouchenak M.
        • Lamri-Senhadji M.
        Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review.
        J Med Food. 2013; 16: 185-198https://doi.org/10.1089/jmf.2011.0238
        • Guasch-Ferré M.
        • Satija A.
        • Blondin S.A.
        • Janiszewski M.
        • Emlen E.
        • O’Connor L.E.
        • et al.
        Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors.
        Circulation. 2019; 139: 1828-1845https://doi.org/10.1161/circulationaha.118.035225
        • Schwingshackl L.
        • Hoffmann G.
        • Iqbal K.
        • Schwedhelm C.
        • Boeing H.
        • et al.
        Food groups and intermediate disease markers: a systematic review and network meta-analysis of randomized trials.
        Am J Clin Nutr. 2018; 108: 576-586https://doi.org/10.1093/ajcn/nqy151
        • Viguiliouk E.
        • Stewart S.E.
        • Jayalath V.H.
        • Ng A.P.
        • Mirrahimi A.
        • de Souza R.J.
        • et al.
        Effect of replacing animal protein with plant protein on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled trials.
        Nutrients. 2015; 7: 9804-9824https://doi.org/10.3390/nu7125509
        • Giang K.W.
        • Björck L.
        • Novak M.
        • Lappas G.
        • Wilhelmsen L.
        • Torén K.
        • et al.
        Stroke and coronary heart disease: predictive power of standard risk factors into old age--long-term cumulative risk study among men in Gothenburg, Sweden.
        Eur Heart J. 2013; 34: 1068-1074https://doi.org/10.1093/eurheartj/ehs458
        • Matsunaga M.
        • Yatsuya H.
        • Iso H.
        • Yamashita K.
        • Li Y.
        • Yamagishi K.
        • et al.
        Similarities and differences between coronary heart disease and stroke in the associations with cardiovascular risk factors: the Japan Collaborative Cohort Study.
        Atherosclerosis. 2017; 261: 124-130https://doi.org/10.1016/j.atherosclerosis.2017.03.003
        • Leening M.J.G.
        • Cook N.R.
        • Franco O.H.
        • Manson J.E.
        • Lakshminarayan K.
        • LaMonte M.J.
        • et al.
        Comparison of cardiovascular risk factors for coronary heart disease and stroke type in women.
        J Am Heart Assoc. 2018; 7: e007514https://doi.org/10.1161/JAHA.117.007514
        • Muhammad I.F.
        • Borné Y.
        • Zaigham S.
        • Söderholm M.
        • Johnson L.
        • Persson M.
        • et al.
        Comparison of risk factors for ischemic stroke and coronary events in a population-based cohort.
        BMC Cardiovasc Disord. 2021; 21: 536https://doi.org/10.1186/s12872-021-02344-4
        • Soler E.P.
        • Ruiz V.C.
        Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: similarities and differences.
        Curr Cardiol Rev. 2010; 6: 138-149https://doi.org/10.2174/157340310791658785
        • Donnan G.A.
        • Fisher M.
        • Macleod M.
        • Davis S.M.
        Stroke.
        Lancet. 2008; 371: 1612-1623https://doi.org/10.1016/S0140-6736(08)60694-7
        • Adams Jr., H.P.
        • Bendixen B.H.
        • Kappelle L.J.
        • Biler J.
        • Love B.B.
        • Gordon D.L.
        • et al.
        Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment.
        Stroke. 1993; 24: 35-41https://doi.org/10.1161/01.str.24.1.35
        • O’Donnell M.J.
        • Xavier D.
        • Liu L.
        • Zhang H.
        • Chin S.L.
        • Rao-Melacini P.
        • et al.
        Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study.
        Lancet. 2010; 376: 112-123https://doi.org/10.1016/S0140-6736(10)60834-3
        • Vergne S.
        • Sauvant P.
        • Lamothe V.
        • Chantre P.
        • Asselineau J.
        • Perez P.
        • et al.
        Influence of ethnic origin (Asian v. Caucasian) and background diet on the bioavailability of dietary isoflavones.
        Br J Nutr. 2009; 102: 1642-1653https://doi.org/10.1017/S0007114509990833