Advertisement

Physiological mechanisms of TLR4 in glucolipid metabolism regulation: Potential use in metabolic syndrome prevention

  • Author Footnotes
    1 These authors contributed equally to this work.
    Feng Zeng
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China

    Medical College, Yangzhou University, Yangzhou 225000, PR China

    Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Jiawei Zheng
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China

    School of Food & Bioengineering, Jiangsu University, Zhenjiang 212013, PR China
    Search for articles by this author
  • Li Shen
    Affiliations
    Medical College, Yangzhou University, Yangzhou 225000, PR China
    Search for articles by this author
  • Daniela D. Herrera-Balandrano
    Affiliations
    School of Life Sciences, Nantong University, Nantong 226019, PR China
    Search for articles by this author
  • Wuyang Huang
    Correspondence
    Corresponding author. Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China.
    Affiliations
    Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China

    School of Food & Bioengineering, Jiangsu University, Zhenjiang 212013, PR China
    Search for articles by this author
  • Zhongquan Sui
    Correspondence
    Corresponding author.
    Affiliations
    Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
Published:October 18, 2022DOI:https://doi.org/10.1016/j.numecd.2022.10.011

      Abstract

      Over-nourishment or an unbalanced diet has been linked to an increase in the prevalence of metabolic syndrome. An imbalance in glucolipid metabolism is a major cause of metabolic syndrome, which has consequences for human health. Toll-like receptor 4 (TLR4), a member of the innate immune pattern recognition receptor family, is involved in inflammation-related disorders, autoimmune diseases, and tumors. Recent research has shown that TLR4 plays a key role in glucolipid metabolism, which is linked to insulin resistance, intestinal flora, and the development of chronic inflammation. TLR4 activation regulates glucolipid metabolism and contributes to the dynamic relationship between innate immunity and nutrition-related disorders. Further, TLR4 regulates glucolipid metabolism by controlling glycolysis and pyruvate oxidative decarboxylation, interfering with insulin signaling, regulating adipogenic gene expression levels, influencing preadipocyte differentiation and lipid accumulation, and altering the intestinal microbiota and permeability. TLR4 functions may provide new therapeutic applications for the prevention and treatment of metabolic syndrome. The purpose of this review is to enrich mechanistic research of diabetes, atherosclerosis, and other nutrition-related disorders by summarizing the role of TLR4 in the regulation of glucolipid metabolism as well as its physiological mechanisms.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Parhofer K.G.
        Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia.
        Diabetes Metab J. 2015; 39: 353-362
        • Haller H.
        • Hanefeld M.
        Synoptische betrachtung metabolischer risikofaktoren.
        in: Haller H. Hanefeld M. Jaross W. Lipidstoffwechselstörungen. Gustav Fischer Verlag, 1975: 254-264
        • Potenza M.V.
        • Mechanick J.I.
        The metabolic syndrome: definition, global impact, and pathophysiology.
        Nutr Clin Pract. 2009; 24: 560-577
        • O'Neill S.
        • O'Driscoll L.
        Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies.
        Obes Rev. 2015; 16: 1-12
        • Fahed G.
        • Aoun L.
        • Bou Zerdan M.
        • Allam S.
        • Bou Zerdan M.
        • Bouferraa Y.
        • Assi H.I.
        Metabolic syndrome: updates on pathophysiology and management in 2021.
        Int J Mol Sci. 2022; 23: 786
        • McCracken E.
        • Monaghan M.
        • Sreenivasan S.
        Pathophysiology of the metabolic syndrome.
        Clin Dermatol. 2018; 36: 14-20
        • Eckel R.H.
        • Alberti K.G.
        • Grundy S.M.
        • Zimmet P.Z.
        The metabolic syndrome.
        Lancet. 2010; 375: 181-183
        • Reaven G.M.
        Banting lecture 1988. Role of insulin resistance in human disease.
        Diabetes. 1988; 37: 1595-1607
        • Balkau B.
        • Charles M.A.
        Comment on the provisional report from the WHO consultation. European group for the study of insulin resistance (EGIR).
        Diabet Med. 1999; 16: 442-443
      1. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III).
        JAMA. 2001; 285: 2486-2497
        • Eckel R.H.
        • Alberti K.G.
        • Grundy S.M.
        • Zimmet P.Z.
        The metabolic syndrome.
        Lancet. 2010; 375: 181-183
        • McCracken E.
        • Monaghan M.
        • Sreenivasan S.
        Pathophysiology of the metabolic syndrome.
        Clin Dermatol. 2018; 36: 14-20
        • Alberti K.G.
        • Zimmet P.
        • Shaw J.
        • IDF Epidemiology Task Force Consensus Group
        The metabolic syndrome-a new worldwide definition.
        Lancet. 2005; 366: 1059-1062
        • Grundy S.M.
        • Cleeman J.I.
        • Daniels S.R.
        • Donato K.A.
        • Eckel R.H.
        • Franklin B.A.
        • Gordon D.J.
        • Krauss R.M.
        • Savage P.J.
        • Smith Jr., S.C.
        • Spertus J.A.
        • Costa F.
        Diagnosis and management of the metabolic syndrome: an American heart association/national heart, lung, and blood Institute scientific statement.
        Circulation. 2005; 112: 2735-2752
        • Saklayen M.G.
        The global epidemic of the metabolic syndrome.
        Curr Hypertens Rep. 2018; 20: 12
        • Alberti K.G.
        • Eckel R.H.
        • Grundy S.M.
        • Zimmet P.Z.
        • Cleeman J.I.
        • Donato K.A.
        • Fruchart J.C.
        • James W.P.
        • Loria C.M.
        • Smith SCJr
        Harmonizing the metabolic syndrome: a joint interim statement of the International diabetes federation task force on epidemiology and prevention; national heart, lung, and blood Institute; American heart association; world heart federation; International atherosclerosis society; and International association for the study of obesity.
        Circulation. 2009; 120: 1640-1645
        • Zhu D.
        • Society Chinese
        Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 Edition).
        Chin J Endocrinol Metab. 2021; 37: 311-398
      2. The Lancet: Latest global disease estimates reveal perfect storm of rising chronic diseases and public health failures fuelling COVID-19 pandemic. Retrieved October 18, 2020.

        • Reddy P.
        • Lent-Schochet D.
        • Ramakrishnan N.
        • McLaughlin M.
        • Jialal I.
        Metabolic syndrome is an inflammatory disorder: a conspiracy between adipose tissue and phagocytes.
        Clin Chim Acta. 2019; 496: 35-44
        • Olona A.
        • Hateley C.
        • Muralidharan S.
        • Wenk M.R.
        • Torta F.
        • Behmoaras J.
        Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation.
        Br J Pharmacol. 2021; 178: 4575-4587https://doi.org/10.1111/bph.15642
        • Saltiel A.R.
        • Olefsky J.M.
        Inflammatory mechanisms linking obesity and metabolic disease.
        J Clin Invest. 2017; 127: 1-4
        • Wang Y.
        • Zhang S.
        • Li H.
        • Wang H.
        • Zhang T.
        • Hutchinson M.R.
        • Yin H.
        • Wang X.
        Small-molecule modulators of Toll-like receptors.
        Accounts Chem Res. 2020; 53: 1046-1055
        • Shi H.
        • Kokoeva M.V.
        • Inouye K.
        • Tzameli I.
        • Yin H.
        • Flier J.S.
        TLR4 links innate immunity and fatty acid-induced insulin resistance.
        J Clin Invest. 2006; 116: 3015-3025
        • Vitseva O.I.
        • Tanriverdi K.
        • Tchkonia T.T.
        • Kirkland J.L.
        • McDonnell M.E.
        • Apovian C.M.
        • Freedman J.
        • Gokce N.
        Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue.
        Obesity. 2008; 16: 932-937
        • Akira S.
        • Takeda K.
        • Kaisho T.
        Toll-like receptors: critical proteins linking innate and acquired immunity.
        Nat Immunol. 2001; 2: 675-680
        • Beutler B.
        • Jiang Z.
        • Georgel P.
        • Crozat K.
        • Croker B.
        • Rutschmann S.
        • Du X.
        • Hoebe K.
        Genetic analysis of host resistance: toll-like receptor signaling and immunity at large.
        Annu Rev Immunol. 2006; 24: 353-389
        • Fekonja O.
        • Benčina M.
        • Jerala R.
        Toll/interleukin-1 receptor domain dimers as the platform for activation and enhanced inhibition of Toll-like receptor signaling.
        J Biol Chem. 2012; 287: 30993-31002
        • Skevaki C.
        • Pararas M.
        • Kostelidou K.
        • Tsakris A.
        • Routsias J.G.
        Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases.
        Clin Exp Immunol. 2015; 180: 165-177
        • Akira S.
        • Uematsu S.
        • Takeuchi O.
        Pathogen recognition and innate immunity.
        Cell. 2006; 124: 783-801
        • Shaw AC.Panda A.
        • Joshi S.R.
        • Qian F.
        • Allore H.G.
        • Montgomery R.R.
        Dysregulation of human Toll-like receptor function in aging.
        Ageing Res Rev. 2011; 10: 346-353
        • Kawai T.
        • Akira S.
        The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors.
        Nat Immunol. 2010; 11: 373-384
      3. Innate immunity system | Review | InvivoGen, https://www.invivogen.com/review-innate-immunity?ref=driverlayer.com.

        • Janeway C.A.
        • Medzhitov R.
        Innate immune recognition.
        Annu Rev Immunol. 2002; 20: 197-216
        • Akira S.
        • Uematsu S.
        • Takeuchi O.
        Pathogen recognition and innate immunity.
        Cell. 2006; 124: 783-801
        • Meylan E.
        • Tschopp J.
        • Karin M.
        Intracellular pattern recognition receptors in the host response.
        Nature. 2006; 442: 39-44
        • Medzhitov R.
        • Preston-Hurlburt P.
        • Janeway C.A.
        A human homologue of the Drosophila Toll protein signals activation of adaptive immunity.
        Nature. 1997; 388: 394-397
        • Rock F.L.
        • Hardiman G.
        • Timans J.C.
        • Kastelein R.A.
        • Bazan J.F.
        A family of human receptors structurally related to Drosophila Toll.
        P Natl Acad Sci USA. 1998; 95: 588-593
        • Jin C.
        • Henao-Mejia J.
        • Flavell R.A.
        Innate immune receptors: key regulators of metabolic disease progression.
        Cell Metabol. 2013; 17: 873-882
        • Park B.S.
        • Song D.H.
        • Kim H.M.
        • Choi B.S.
        • Lee H.
        • Lee J.O.
        The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex.
        Nature. 2009; 458: 1191-1195
        • Lucas K.
        • Maes M.
        Role of the Toll like receptor (TLRs) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway.
        Mol Neurobiol. 2013; 48: 190-204
        • Dapito D.H.
        • Mencin A.
        • Gwak G.Y.
        • Pradere J.P.
        • Jang M.K.
        • Mederacke I.
        • Caviglia J.M.
        • Khiabanian H.
        • Adeyemi A.
        • Bataller R.
        • Lefkowitch J.H.
        • Bower M.
        • Friedman R.
        • Sartor R.B.
        • Rabadan R.
        • Schwabe R.F.
        Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4.
        Cancer Cell. 2012; 21: 504-516
        • Deguine J.
        • Barton G.M.
        MyD88: a central player in innate immune signaling.
        F1000 Prime Rep. 2014; 6: 97
        • Pålsson-McDermott E.M.
        • O'Neill L.A.
        Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4.
        Immunology. 2004; 113: 153-162
        • Kawai T.
        • Takeuchi O.
        • Fujita T.
        • Inoue J.
        • Mühlradt P.F.
        • Sato S.
        • Hoshino K.
        • Akira S.
        Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes.
        J Immunol. 2001; 167: 5887-5894
        • Akira S.
        • Hoshino K.
        Myeloid differentiation factor 88-dependent and -independent pathways in toll-like receptor signaling.
        J Infect Dis. 2003; 187: S356-S363
        • Yang Y.
        • Lv J.
        • Jiang S.
        • Ma Z.
        • Wang D.
        • Hu W.
        • Deng C.
        • Fan C.
        • Di S.
        • Sun Y.
        • Yi W.
        The emerging role of Toll-like receptor 4 in myocardial inflammation.
        Cell Death Dis. 2016; 7 (26)e2234
        • Calvo-Rodriguez M.
        • García-Rodríguez C.
        • Villalobos C.
        • Núñez L.
        Role of Toll like receptor 4 in Alzheimer's disease.
        Front Immunol. 2020; 11: 1588
        • Kiziltas S.
        • Ata P.
        • Colak Y.
        • Mesçi B.
        • Senates E.
        • Enc F.
        • Ulasoglu C.
        • Tuncer I.
        • Oguz A.
        TLR4 gene polymorphism in patients with nonalcoholic fatty liver disease in comparison to healthy controls.
        Metab Syndr Relat Disord. 2014; 12: 165-170
        • Mamedova L.K.
        • Yuan K.
        • Laudick A.N.
        • Fleming S.D.
        • Mashek D.G.
        • Bradford B.J.
        Toll-like receptor 4 signaling is required for induction of gluconeogenic gene expression by palmitate in human hepatic carcinoma cells.
        J Nutr Biochem. 2013; 24: 1499-1507
        • Raetzsch C.F.
        • Brooks N.L.
        • Alderman J.M.
        • Moore K.S.
        • Hosick P.A.
        • Klebanov S.
        • Akira S.
        • Bear J.E.
        • Baldwin A.S.
        • Mackman N.
        • Combs T.P.
        Lipopolysaccharide inhibition of glucose production through the Toll-like receptor-4, myeloid differentiation factor 88, and nuclear factor kappa b pathway.
        Hepatology. 2009; 50: 592-600
        • Jia L.
        • Vianna C.R.
        • Fukuda M.
        • Berglund E.D.
        • Liu C.
        • Tao C.
        • Sun K.
        • Liu T.
        • Harper M.J.
        • Lee C.E.
        • Lee S.
        • Scherer P.E.
        • Elmquist J.K.
        Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance.
        Nat Commun. 2014; 5: 3878
        • Balic J.J.
        • Albargy H.
        • Luu K.
        • Kirby F.J.
        • Jayasekara W.
        • Mansell F.
        • Garama D.J.
        • De Nardo D.
        • Baschuk N.
        • Louis C.
        • Humphries F.
        • Fitzgerald K.
        • Latz E.
        • Gough D.J.
        • Mansell A.
        STAT3 serine phosphorylation is required for TLR4 metabolic reprogramming and IL-1β expression.
        Nat Commun. 2020; 11: 3816
        • Pang S.
        • Tang H.
        • Zhuo S.
        • Zang Y.Q.
        • Le Y.
        Regulation of fasting fuel metabolism by toll-like receptor 4.
        Diabetes. 2010; 59: 3041-3048
        • Perrin-Cocon L.
        • Aublin-Gex A.
        • Diaz O.
        • Ramière C.
        • Peri F.
        • André P.
        • Lotteau V.
        Toll-like receptor 4-induced glycolytic burst in human monocyte-derived dendritic cells results from p38-dependent stabilization of HIF-1α and increased hexokinase II expression.
        J Immunol. 2018; 201: 1510-1521
        • Gülden E.
        • Ihira M.
        • Ohashi A.
        • Reinbeck A.L.
        • Freudenberg M.A.
        • Kolb H.
        • Burkart V.
        Toll-like receptor 4 deficiency accelerates the development of insulin-deficient diabetes in non-obese diabetic mice.
        PLoS One. 2013; 8e75385
        • Wen L.
        • Ley R.E.
        • Volchkov P.Y.
        • Stranges P.B.
        • Avanesyan L.
        • Stonebraker A.C.
        • Hu C.
        • Wong F.S.
        • Szot G.L.
        • Bluestone J.A.
        • Gordon J.I.
        • Chervonsky A.V.
        Innate immunity and intestinal microbiota in the development of Type 1 diabetes.
        Nature. 2008; 455: 1109-1113
        • Kim J.J.
        • Sears D.D.
        TLR4 and insulin iesistance.
        Gastroent Res Pract. 2010; 2010212563
        • Reyna S.M.
        • Ghosh S.
        • Tantiwong P.
        • Meka C.S.
        • Eagan P.
        • Jenkinson C.P.
        • Cersosimo E.
        • Defronzo R.A.
        • Coletta D.K.
        • Sriwijitkamol A.
        • Musi N.
        Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.
        Diabetes. 2008; 57: 2595-2602
        • Morel S.
        • Léveillé P.
        • Samoilenko M.
        • Franco A.
        • England J.
        • Malaquin N.
        • Tu V.
        • Cardin G.B.
        • Drouin S.
        • Rodier F.
        • Lippé S.
        • Krajinovic M.
        • Laverdière C.
        • Sinnett D.
        • Lefebvre G.
        • Levy E.
        • Marcil V.
        Biomarkers of cardiometabolic complications in survivors of childhood acute lymphoblastic leukemia.
        Sci Rep. 2020; 1021507
        • Bieghs V.
        • Trautwein C.
        Innate immune signaling and gut liver interactions in non-alcoholic fatty liver disease.
        Hepatobiliary Surg Nutr. 2014; 3: 377-385
        • Huang S.
        • Rutkowsky J.M.
        • Snodgrass R.G.
        • Ono-Moore K.D.
        • Schneider D.A.
        • Newman J.W.
        • Adams S.H.
        • Hwang D.H.
        Saturated fatty acids activate TLRs-mediated proinflammatory signaling pathways.
        J Lipid Res. 2012; 53: 2002-2013
        • Aamir K.
        • Khan H.U.
        • Sethi G.
        • Hossain M.A.
        • Arya A.
        Wnt signaling mediates TLRs pathway and promote unrestrained adipogenesis and metaflammation: therapeutic targets for obesity and type 2 diabetes.
        Pharmacol Res. 2020; 152104602
        • Hotamisligil G.
        • Erbay E.
        Nutrient sensing andinflammation in metabolic diseases.
        Nat Rev Immunol. 2008; 8: 923-934
        • Schenk S.
        • Saberi M.
        • Olefsky M.
        Insulin sensitivity: modulation by nutrients and inflammation.
        J Clin Invest. 2008; 118: 2992-3002
        • Hotamisligil G.
        • Peraldi P.
        • Budavari A.
        • Ellis R.
        • White M.F.
        • Spiegelman B.M.
        IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance.
        Science. 1996; 271: 665-668
        • Pal D.
        • Dasgupta S.
        • Kundu R.
        • Maitra S.
        • Das G.
        • Mukhopadhyay S.
        • Ray S.
        • Majumdar S.S.
        • Bhattacharya S.
        Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance.
        Nat Med. 2012; 18: 1279-1285
        • Kim F.
        • Pham M.
        • Luttrell I.
        • Bannerman D.D.
        • Tupper J.
        • Thaler J.
        • Hawn T.R.
        • Raines E.W.
        • Schwartz M.W.
        Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity.
        Circ Res. 2007; 100: 1589-1596
        • Holland W.L.
        • Bikman B.T.
        • Wang L.P.
        • Yuguang G.
        • Sargent K.M.
        • Bulchand S.
        • Knotts T.A.
        • Shui G.
        • Clegg D.J.
        • Wenk M.R.
        • Pagliassotti M.J.
        • Scherer P.E.
        • Summers S.A.
        Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice.
        J Clin Invest. 2011; 121: 1858-1870
        • Davis F.M.
        • denDekker A.
        • Kimball A.
        • Joshi A.D.
        • El Azzouny M.
        • Wolf S.J.
        • Obi A.T.
        • Lipinski J.
        • Gudjonsson J.E.
        • Xing X.
        • Plazyo O.
        • Audu C.
        • Melvin W.J.
        • Singer K.
        • Henke P.K.
        • Moore B.B.
        • Burant C.
        • Kunkel S.L.
        • Gallagher K.A.
        Epigenetic regulation of TLR4 in diabetic macrophages modulates Immunometabolism and wound repair.
        J Immunol. 2020; 204: 2503-2513
        • Li T.
        • Hu S.M.
        • Pang X.Y.
        • Wang J.F.
        • Yin J.Y.
        • Li F.H.
        • Wang J.
        • Yang X.Q.
        • Xia B.
        • Liu Y.H.
        • Song W.G.
        • Guo S.D.
        The marine-derived furanone reduces intracellular lipid accumulation in vitro by targeting LXRα and PPARα.
        J Cell Mol Med. 2020; 24: 3384-3398
        • Zhang Z.H.
        • Liu X.Q.
        • Zhang C.
        • He W.
        • Wang H.
        • Chen Y.H.
        • Liu X.J.
        • Chen X.
        • Xu D.X.
        TLR4-mutant mice are resistant to acute alcohol-induced sterol-regulatory element binding protein activation and hepatic lipid accumulation.
        Sci Rep. 2016; 633513
        • Renovato-Martins M.
        • Moreira-Nunes C.
        • Atella G.C.
        • Barja-Fidalgo C.
        • Moraes J.A.
        Obese adipose tissue secretion induces inflammation in preadipocytes: role of Toll-like receptor-4.
        Nutrients. 2020; 12: 2828
        • Cervera P.I.
        • Gabriel B.M.
        • Aldiss P.
        • Morton N.M.
        The phospholipase A2 family's role in metabolic diseases: focus on skeletal muscle.
        Phys Rep. 2021; 9e14662
        • Qi H.Y.
        • Shelhamer J.H.
        Toll-like receptor 4 signaling regulates cytosolic phospholipase A2 activation and lipid generation in lipopolysaccharide-stimulated macrophages.
        J Biol Chem. 2005; 280: 38969-38975
        • Lu Z.
        • Zhang X.
        • Li Y.
        • Jin J.
        • Huang Y.
        TLR4 antagonist reduces early-stage atherosclerosis in diabetic apolipoprotein E-deficient mice.
        J Endocrinol. 2013; 216: 61-71
        • Tremaroli V.
        • Bäckhed F.
        Functional interactions between the gut microbiota and host metabolism.
        Nature. 2012; 489: 242-249
        • Clemente J.C.
        • Ursell L.K.
        • Parfrey L.W.
        • Knight R.
        The impact of the gut microbiota on human health: an integrative view.
        Cell. 2012; 148: 1258-1270
        • Amar J.
        • Chabo C.
        • Waget A.
        • Klopp P.
        • Vachoux C.
        • Bermúdez-Humarán L.G.
        • Smirnova N.
        • Bergé M.
        • Sulpice T.
        • Lahtinen S.
        • Ouwehand A.
        • Langella P.
        • Rautonen N.
        • Sansonetti P.J.
        • Burcelin R.
        Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment.
        EMBO Mol Med. 2011; 3: 559-572
        • Guo S.
        • Al-Sadi R.
        • Said H.M.
        • Ma T.Y.
        Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLRs-4 and CD14.
        Am J Pathol. 2013; 182: 375-387
        • Kim K.A.
        • Gu W.
        • Lee I.A.
        • Joh E.H.
        • Kim D.H.
        High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway.
        PLoS One. 2012; 7e47713
        • Guo S.
        • Nighot M.
        • Al-Sadi R.
        • Alhmoud T.
        • Nighot P.
        • Ma T.Y.
        Lipopolysaccharide regulation of intestinal tight junction permeability is mediated by TLR4 signal transduction pathway activation of FAK and MyD88.
        J Immunol. 2015; 195: 4999-5010
        • Zhang Y.
        • Igwe O.J.
        Role of Toll-like receptor 4/oxidant-coupled activation in regulating the biosynthesis of omega-3 polyunsaturated fatty acid derivative resolvin D1 in primary murine peritoneal macrophage.
        Biochem Pharmacol. 2018; 158: 73-83
        • Kanzler H.
        • Barrat F.J.
        • Hessel E.M.
        • Coffman R.L.
        Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists.
        Nat Med. 2007; 13: 552-559