Advertisement

Glucose toxicity: The leading actor in the pathogenesis and clinical history of type 2 diabetes – mechanisms and potentials for treatment

      Abstract

      Aim

      Although it is now well established that the deleterious effects of chronic hyperglycaemia (i.e., glucose toxicity) play an important role in the progressive impairment of insulin secretion and sensitivity, the two major actors of the pathogenesis of type 2 diabetes mellitus, the precise biochemical and molecular mechanisms responsible for the defects induced by glucose toxicity still remain to be defined.

      Data synthesis

      here we will briefly report on convincing evidence that glucose toxicity acts through oxidative stress, modifications in the exosamine pathway, protein kinase C and others. After inducing or contributing to the genesis of type 2 diabetes, these same mechanisms are considered responsible for the appearance and worsening of diabetic specific microvascular complications, while its role in increasing the risk of cardiovascular diseases is less clear. Recent intervention studies (ADVANCE, ACCORD, VADT), conducted to evaluate the effects of strict glycaemic control, apparently failed to demonstrate an effect of glucose toxicity on cardiovascular diseases, at least in secondary prevention or when diabetes is present for a prolonged time. The re-examination, 20 years later, of the population studied in the UKPDS study, however, clearly demonstrated that the earliest is the strict glycaemic control reached, the lowest is the incidence of cardiovascular diseases observed, including myocardial infarction.

      Conclusion

      The acquaintance of the role of glucose toxicity should strongly influence the usual therapeutic choices and glycaemic targets where the reduced or absent risk of hypoglycaemia, durability of action, and data on prolonged safety should be the preferred characteristics of the drug of choice in the treatment of type 2 diabetes mellitus.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Nutrition, Metabolism and Cardiovascular Diseases
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Haist R.E.
        • Campbell J.
        • Best C.H.
        The prevention of diabetes.
        N Engl J Med. 1940; 223: 607-615
        • Robertson R.P.
        • Porte Jr., D.
        The glucose receptor. A defective mechanism in diabetes mellitus distinct from the beta adrenergic receptor.
        J Clin Invest. 1973; 52: 870-876
        • Cerasi E.
        • Luft R.
        • Efendic S.
        Decreased sensitivity of the pancreatic beta cells to glucose in prediabetic and diabetic subjects. A glucose dose-response study.
        Diabetes. 1972; 21: 224-234
        • Kosaka K.
        • Kuzuya T.
        • Akanuma Y.
        • Hagura R.
        Increase in insulin response after treatment of overt maturity-onset diabetes is independent of the mode of treatment.
        Diabetologia. 1980; 18: 23-28
        • Vague P.
        • Moulin J.P.
        The defective glucose sensitivity of the B cell in non insulin dependent diabetes. Improvement after twenty hours of normoglycaemia.
        Metabolism. 1982; 31: 139-142
        • Garvey W.T.
        • Olefsky J.M.
        • Griffin J.
        • Hamman R.F.
        • Kolterman O.G.
        The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus.
        Diabetes. 1985; 34: 222-234
        • Rossetti L.
        • Shulman G.I.
        • Zawalich W.
        • DeFronzo R.A.
        Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats.
        J Clin Invest. 1987; 80: 1037-1044
        • Rossetti L.
        • Smith D.
        • Shulman G.I.
        • Papachristou D.
        • DeFronzo R.A.
        Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats.
        J Clin Invest. 1987; 79: 1510-1515
        • Kahn B.B.
        • Shulman G.I.
        • DeFronzo R.A.
        • Cushman S.W.
        • Rossetti L.
        Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression.
        J Clin Invest. 1991; 87: 561-570
        • Grill V.
        • Westberg M.
        • Ostenson C.G.
        B cell insensitivity in a rat model of non-insulin-dependent diabetes. Evidence for a rapidly reversible effect of previous hyperglycemia.
        J Clin Invest. 1987; 80: 664-669
        • Kim J.K.
        • Zisman A.
        • Fillmore J.J.
        • Peroni O.D.
        • Kotani K.
        • Perret P.
        • et al.
        Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4.
        J Clin Invest. 2001; 108: 153-160
        • Voyles N.R.
        • Powell A.M.
        • Timmers K.I.
        • Wilkins S.D.
        • Bhathena S.J.
        • Hansen C.
        • et al.
        Reversible impairment of glucose-induced insulin secretion in SHR/N-cp rats. Genetic model of type II diabetes.
        Diabetes. 1988; 37: 398-404
        • Giroix M.H.
        • Portha B.
        • Kergoat M.
        • Bailbe D.
        • Picon L.
        Glucose insensitivity and amino-acid hypersensitivity of insulin release in rats with non-insulin-dependent diabetes. A study with the perfused pancreas.
        Diabetes. 1983; 32: 445-451
        • Davalli A.M.
        • Ricordi C.
        • Socci C.
        • Braghi S.
        • Bertuzzi F.
        • Fattor B.
        • et al.
        Abnormal sensitivity to glucose of human islets cultured in a high glucose medium: partial reversibility after an additional culture in a normal glucose medium.
        J Clin Endocrinol Metab. 1991; 72: 202-208
        • Bonner-Weir S.
        • Trent D.F.
        • Honey R.N.
        • Weir G.C.
        Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia.
        Diabetes. 1981; 30: 64-69
        • Bonner-Weir S.
        • Trent D.F.
        • Weir G.C.
        Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release.
        J Clin Invest. 1983; 71: 1544-1553
        • Leahy J.L.
        • Bonner-Weir S.
        • Weir G.C.
        Minimal chronic hyperglycemia is a critical determinant of impaired insulin secretion after an incomplete pancreatectomy.
        J Clin Invest. 1988; 81: 1407-1414
        • Leahy J.L.
        • Cooper H.E.
        • Deal D.A.
        • Weir G.C.
        Chronic hyperglycemia is associated with impaired glucose influence on insulin secretion. A study in normal rats using chronic in vivo glucose infusions.
        J Clin Invest. 1986; 77: 908-915
        • Nawano M.
        • Oku A.
        • Ueta K.
        • Umebayashi I.
        • Ishirahara T.
        • Arakawa K.
        • et al.
        Hyperglycemia contributes insulin resistance in hepatic and adipose tissue but not skeletal muscle of ZDF rats.
        Am J Physiol Endocrinol Metab. 2000; 278: E535-E543
        • Portha B.
        • Serradas P.
        • Bailbé D.
        • Suzuki K.
        • Goto Y.
        • Giroix M.H.
        Beta-cell insensitivity to glucose in the GK rat, a spontaneous nonobese model for type II diabetes.
        Diabetes. 1991; 40: 486-491
        • Tokuyama Y.
        • Sturis J.
        • DePaoli A.M.
        • Takeda J.
        • Stoffel M.
        • Tang J.
        • et al.
        Evolution of beta-cell dysfunction in the male Zucker diabetic fatty rat.
        Diabetes. 1995; 44: 1447-1457
        • Donath M.Y.
        • Gross D.J.
        • Cerasi E.
        • Kaiser N.
        Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes.
        Diabetes. 1999; 48: 738-744
        • Rossetti L.
        • Giaccari A.
        • DeFronzo R.A.
        Glucose toxicity.
        Diabetes Care. 1990; 13: 610-630
        • Leahy J.L.
        • Weir G.C.
        Evolution of abnormal insulin secretory responses during 48-h in vivo hyperglycemia.
        Diabetes. 1988; 37: 217-222
        • Marshall S.
        • Bacote V.
        • Traxinger R.R.
        Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance.
        J Biol Chem. 1991; 266: 4706-4712
        • Giaccari A.
        • Morviducci L.
        • Zorretta D.
        • Sbraccia P.
        • Leonetti F.
        • Caiola S.
        • et al.
        In vivo effects of glucosamine on insulin secretion and insulin sensitivity in the rat: possible relevance to the maladaptive responses to chronic hyperglycaemia.
        Diabetologia. 1995; 38: 518-524
        • Robinson K.A.
        • Sens D.A.
        • Buse M.G.
        Pre-exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Study of mechanisms in muscle and in rat-1 fibroblasts overexpressing the human insulin receptor.
        Diabetes. 1993; 42: 1333-1346
        • Rossetti L.
        • Hawkins M.
        • Chen W.
        • Gindi J.
        • Barzilai N.
        In vivo glucosamine infusion induces insulin resistance in normoglycemic but not in hyperglycemic conscious rats.
        J Clin Invest. 1995; 96: 132-140
        • Daniels M.C.
        • Ciaraldi T.P.
        • Nikoulina S.
        • Henry R.R.
        • McClain D.A.
        Glutamine:fructose-6-phosphate amidotransferase activity in cultured human skeletal muscle cells: relationship to glucose disposal rate in control and non-insulin-dependent diabetes mellitus subjects and regulation by glucose and insulin.
        J Clin Invest. 1996; 97: 1235-1241
        • Cooksey R.C.
        • McClain D.A.
        Transgenic mice overexpressing the rate-limiting enzyme for hexosamine synthesis in skeletal muscle or adipose tissue exhibit total body insulin resistance.
        Ann N Y Acad Sci. 2002 Jun; 967: 102-111
        • Hebert Jr., L.F.
        • Daniels M.C.
        • Zhou J.
        • Crook E.D.
        • Turner R.L.
        • Simmons S.T.
        • et al.
        Overexpression of glutamine:fructose-6-phosphate amidotransferase in transgenic mice leads to insulin resistance.
        J Clin Invest. 1996; 98: 930-936
        • Veerababu G.
        • Tang J.
        • Hoffman R.T.
        • Daniels M.C.
        • Hebert Jr., L.F.
        • Crook E.D.
        • et al.
        Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance.
        Diabetes. 2000; 49: 2070-2078
        • Tang J.
        • Neidigh J.L.
        • Cooksey R.C.
        • McClain D.A.
        Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyperinsulinemia and peripheral insulin resistance.
        Diabetes. 2000; 49: 1492-1499
        • Yang X.
        • Ongusaha P.P.
        • Miles P.D.
        • Havstad J.C.
        • Zhang F.
        • So W.V.
        • et al.
        Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance.
        Nature. 2008; 451: 964-969
        • Vosseller K.
        • Wells L.
        • Lane M.D.
        • Hart G.W.
        Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes.
        Proc Natl Acad Sci U S A. 2002; 99: 5313-5318
        • McClain D.A.
        Hexosamines as mediators of nutrient sensing and regulation in diabetes.
        J Diabetes Complications. 2002; 16: 72-80
        • Marshall S.
        • Garvey W.T.
        • Traxinger R.R.
        New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids.
        FASEB J. 1991; 5: 3031-3036
        • Baron A.D.
        • Zhu J.S.
        • Zhu J.H.
        • Weldon H.
        • Maianu L.
        • Garvey W.T.
        Glucosamine induces insulin resistance in vivo by affecting GLUT 4 translocation in skeletal muscle. Implications for glucose toxicity.
        J Clin Invest. 1995; 96: 2792-2801
        • Kuo M.
        • Zilberfarb V.
        • Gangneux N.
        • Christeff N.
        • Issad T.
        O-GlcNAc modification of FoxO1 increases its transcriptional activity: a role in the glucotoxicity phenomenon?.
        Biochimie. 2008; 90: 679-685
        • Pouwels M.J.
        • Tack C.J.
        • Span P.N.
        • Olthaar A.J.
        • Sweep C.G.
        • Huvers F.C.
        • et al.
        Role of hexosamines in insulin resistance and nutrient sensing in human adipose and muscle tissue.
        J Clin Endocrinol Metab. 2004; 89: 5132-5137
        • Yki-Järvinen H.
        • Daniels M.C.
        • Virkamäki A.
        • Mäkimattila S.
        • DeFronzo R.A.
        • McClain D.
        Increased glutamine:fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM.
        Diabetes. 1996; 45: 302-307
        • Buse M.G.
        Hexosamines, insulin resistance, and the complications of diabetes: current status.
        Am J Physiol Endocrinol Metab. 2006; 290: E1-E8
        • Srinivasan V.
        • Sandhya N.
        • Sampathkumar R.
        • Farooq S.
        • Mohan V.
        • Balasubramanyam M.
        Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress.
        Clin Biochem. 2007; 40: 952-957
        • Wells L.
        • Vosseller K.
        • Hart G.W.
        A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance.
        Cell Mol Life Sci. 2003; 60: 222-228
        • Considine R.V.
        Regulation of leptin production.
        Rev Endocr Metab Disord. 2001; 2: 357-363
        • Pouwels M.J.
        • Jacobs J.R.
        • Span P.N.
        • Lutterman J.A.
        • Smits P.
        • Tack C.J.
        Short-term glucosamine infusion does not affect insulin sensitivity in humans.
        J Clin Endocrinol Metab. 2001; 86: 2099-2103
        • Rudich A.
        • Kozlovsky N.
        • Potashnik R.
        • Bashan N.
        Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes.
        Am J Physiol. 1997; 272: E935-E940
        • Tirosh A.
        • Rudich A.
        • Potashnik R.
        • Bashan N.
        Oxidative stress impairs insulin but not platelet-derived growth factor signalling in 3T3-L1 adipocytes.
        Biochem J. 2001; 355: 757-763
        • Robertson R.P.
        • Harmon J.S.
        Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell.
        Free Radic Biol Med. 2006 Jul 15; 41: 177-184
        • Rolo A.P.
        • Palmeira C.M.
        Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress.
        Toxicol Appl Pharmacol. 2006; 212: 167-178
        • Brownlee M.
        Biochemistry and molecular cell biology of diabetic complications.
        Nature. 2001; 414: 813-820
        • Tanaka Y.
        • Gleason C.E.
        • Tran P.O.
        • Harmon J.S.
        • Robertson R.P.
        Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants.
        Proc Natl Acad Sci U S A. 1999; 96: 10857-10862
        • Kaneto H.
        • Kajimoto Y.
        • Miyagawa J.
        • Matsuoka T.
        • Fujitani Y.
        • Umayahara Y.
        • et al.
        Beneficial effects of antioxidants in diabetes: possible protection of pancreaticbeta-cells against glucose toxicity.
        Diabetes. 1999; 48: 2398-2406
        • Sauerhöfer S.
        • Yuan G.
        • Braun G.S.
        • Deinzer M.
        • Neumaier M.
        • Gretz N.
        • et al.
        L-carnosine, a substrate of carnosinase-1, influences glucose metabolism.
        Diabetes. 2007; 56: 2425-2432
        • Grankvist K.
        • Marklund S.L.
        • Täljedal I.B.
        CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse.
        Biochem J. 1981; 199: 393-398
        • Maassen J.A.
        • ’T Hart L.M.
        • Van Essen E.
        • Heine R.J.
        • Nijpels G.
        • Jahangir Tafrechi R.S.
        • et al.
        Mitochondrial diabetes: molecular mechanisms and clinical presentation.
        Diabetes. 2004; 53: S103-S109
        • Lamson D.W.
        • Plaza S.M.
        Mitochondrial factors in the pathogenesis of diabetes: a hypothesis for treatment.
        Altern Med Rev. 2002; 7: 94-111
        • Serradas P.
        • Giroix M.H.
        • Saulnier C.
        • Gangnerau M.N.
        • Borg L.A.
        • Welsh M.
        • et al.
        Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of noninsulin-dependent diabetes.
        Endocrinology. 1995; 136: 5623-5631
        • Lee H.K.
        • Song J.H.
        • Shin C.S.
        • Park D.J.
        • Park K.S.
        • Lee K.U.
        • et al.
        Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus.
        Diabetes Res Clin Pract. 1998; 42: 161-167
        • Evans J.L.
        • Maddux B.A.
        • Goldfine I.D.
        The molecular basis for oxidative stress-induced insulin resistance.
        Antioxid Redox Signal. 2005; 7: 1040-1052
        • Bloch-Damti A.
        • Bashan N.
        Proposed mechanism for the induction of insulin resistance by oxidative stress.
        Antioxid Redox Signal. 2005; 7: 1553-1567
        • International Prandial Glucose Regulation Study Group
        Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update.
        Nutr Metab Cardiovasc Dis. 2006; 16: 453-456
        • Ceriello A.
        • Colagiuri S.
        • Gerich J.
        • Tuomilehto J.
        Guideline Development Group. Guideline for management of postmeal glucose.
        Nutr Metab Cardiovasc Dis. 2008; 18: S17-S33
        • Monnier L.
        • Mas E.
        • Ginet C.
        • Michel F.
        • Villon L.
        • Cristol J.P.
        • et al.
        Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes.
        JAMA. 2006; 295: 1681-1687
        • Erlinger T.P.
        • Brancati F.L.
        Postchallenge hyperglicemia in a National sample of U.S. adults with type 2 diabetes.
        Diabetes Care. 2001; 24: 1734-1738
        • Bonora E.
        • Corrao G.
        • Bagnardi V.
        • Ceriello A.
        • Comaschi M.
        • Montanari P.
        • et al.
        Prevalence and correlates of postprandial hyperglicemia in a large sample of patients with type 2 diabetes mellitus.
        Diabetologia. 2006; 49: 846-854
        • Hanefeld M.
        • Fischer S.
        • Julius U.
        • Schulze J.
        • Schwanebeck U.
        • Schmechel H.
        • et al.
        Risk factors for miocardial infarction and death in newly detected NIDDM: the Diabetes Intervention Study, 11 year of follow up.
        Diabetologia. 1996; 39: 1577-1583
        • Marfella R.
        • Quagliaro L.
        • Nappo F.
        • Ceriello A.
        • Giugliano D.
        Acute hyperglicemia induce an oxidative stress in healthy subjects.
        J Clin Invest. 2001; 108: 635-636
        • Meugnier E.
        • Faray M.
        • Rome S.
        • Beauregard G.
        • Michaut A.
        • Pelloux V.
        • et al.
        Acute hyperglycemia induces a global downregulation of gene expression in adipose tissue and skeletal muscle of healthy subjects.
        Diabetes. 2007; 56: 992-999
        • Chen K.S.
        • Heydrick S.J.
        • Brown M.L.
        • Friel J.C.
        • Ruderman N.B.
        Insulin increases a biochemically distinct pool of diacylglycerol in the rat soleus muscle.
        Am J Physiol. 1994; 266: E479-E485
        • Moscat J.
        • Diaz-Meco M.T.
        • Rennert P.
        NF-kappaB activation by protein kinase C isoforms and B-cell function.
        EMBO Rep. 2003; 4: 31-36
        • Avogaro A.
        • Fadini G.P.
        • Gallo A.
        • Pagnin E.
        • de Kreutzenberg S.
        Endothelial dysfunction in type 2 diabetes mellitus.
        Nutr Metab Cardiovasc Dis. 2006; 16: S39-S45
        • Freidenberg G.R.
        • Henry R.R.
        • Klein H.H.
        • Reichart D.R.
        • Olefsky J.M.
        Decreased kinase activity of insulin receptors from adipocytes of non-insulin-dependent diabetic subjects.
        J Clin Invest. 1987; 79: 240-250
        • Freidenberg G.R.
        • Reichart D.
        • Olefsky J.M.
        • Henry R.R.
        Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mellitus. Effect of weight loss.
        J Clin Invest. 1988; 82: 1398-1406
        • Maegawa H.
        • Shigeta Y.
        • Egawa K.
        • Kobayashi M.
        Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in nonobese subjects with NIDDM.
        Diabetes. 1991; 40: 815-819
        • Obermaier-Kusser B.
        • White M.F.
        • Pongratz D.E.
        • Su Z.
        • Ermel B.
        • Muhlbacher C.
        • et al.
        A defective intramolecular autoactivation cascade may cause the reduced kinase activity of the skeletal muscle insulin receptor from patients with non-insulin-dependent diabetes mellitus.
        J Biol Chem. 1989; 264: 9497-9504
        • Häring H.U.
        • Tippmer S.
        • Kellerer M.
        • Mosthaf L.
        • Kroder G.
        • Bossenmaier B.
        • et al.
        Modulation of insulin receptor signaling. Potential mechanisms of a cross talk between bradykinin and the insulin receptor.
        Diabetes. 1996; 45: S115-S119
        • Müller H.K.
        • Kellerer M.
        • Ermel B.
        • Mühlhöfer A.
        • Obermaier-Kusser B.
        • Vogt B.
        • et al.
        Prevention by protein kinase C inhibitors of glucose-induced insulin-receptor tyrosine kinase resistance in rat fat cells.
        Diabetes. 1991; 40: 1440-1448
        • Berti L.
        • Mosthaf L.
        • Kroder G.
        • Kellerer M.
        • Tippmer S.
        • Mushack J.
        • et al.
        Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase.
        J Biol Chem. 1994; 269: 3381-3386
        • Schram M.T.
        • Chaturvedi N.
        • Schalkwijk C.
        • Giorgino F.
        • Ebeling P.
        • Fuller J.H.
        • et al.
        EURODIAB Prospective Complications Study. Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes: the EURODIAB Prospective Complications Study.
        Diabetes Care. 2003; 26: 2165-2173
        • Schalkwijk C.G.
        • Poland D.C.
        • van Dijk W.
        • Kok A.
        • Emeis J.J.
        • Dräger A.M.
        • et al.
        Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation.
        Diabetologia. 1999; 42: 351-357
        • Devaraj S.
        • Glaser N.
        • Griffen S.
        • Wang-Polagruto J.
        • Miguelino E.
        • Jialal I.
        Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes.
        Diabetes. 2006; 55: 774-779
        • Dasu M.R.
        • Devaraj S.
        • Zhao L.
        • Hwang D.H.
        • Jialal I.
        High glucose induces toll-like receptor expression in human monocytes: mechanism of activation.
        Diabetes. 2008; 57: 3090-3098
        • Mandrup-Poulsen T.
        The role of interleukin-1 in the pathogenesis of IDDM.
        Diabetologia. 1996; 39: 1005-1029
        • Maedler K.
        • Sergeev P.
        • Ris F.
        • Oberholzer J.
        • Joller-Jemelka H.I.
        • Spinas G.A.
        • et al.
        Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets.
        J Clin Invest. 2002; 110: 851-860
        • Stassi G.
        • De Maria R.
        • Trucco G.
        • Rudert W.
        • Testi R.
        • Galluzzo A.
        • et al.
        Nitric oxide primes pancreatic beta cells for Fas-mediated destruction in insulin-dependent diabetes mellitus.
        J Exp Med. 1997; 186: 1193-1200
        • Beutler B.
        Inferences, questions and possibilities in Toll-like receptor signalling.
        Nature. 2004; 430: 257-263
        • Yki-Jarvinen H.
        • Koivisto V.A.
        Natural course of insulin resistance in type I diabetes.
        N Engl J Med. 1986; 315: 224-230
        • Lillioja S.
        • Mott D.M.
        • Howard B.V.
        • Bennett P.H.
        • Yki-Jarvinen H.
        • Freymond D.
        • et al.
        Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians.
        N Engl J Med. 1988; 318: 1217-1225
        • Sakul H.
        • Pratley R.
        • Cardon L.
        • Ravussin E.
        • Mott D.
        • Bogardus C.
        Familiarity of physical and metabolic characteristics that predict the development of non-insulin-dependent diabetes mellitus in Pima Indians.
        Am J Hum Genet. 1997; 60: 651-656
        • Yki-Jarvinen H.
        • Helve E.
        • Koivisto V.A.
        Hyperglycemia decreases glucose uptake in type I diabetes.
        Diabetes. 1987; 36: 892-896
        • Vuorinen-Markkola H.
        • Koivisto V.A.
        • Yki-Jarvinen H.
        Mechanisms of hyperglycemia-induced insulin resistance in whole body and skeletal muscle of type I diabetic patients.
        Diabetes. 1992; 41: 571-580
      1. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. U.K. Prospective Diabetes Study Group Diabetes 1995;44:1249–1258.

        • Marchetti P.
        • Del Prato S.
        • Lupi R.
        • Del Guerra S.
        The pancreatic beta-cell in human Type 2 diabetes.
        Nutr Metab Cardiovasc Dis. 2006; 16: S3-S6
        • Butler A.E.
        • Janson J.
        • Bonner Weir S.
        • Ritzel R.
        • Rizza R.A.
        • Butler P.C.
        Beta cell deficit and increased beta cell apoptosis in humans with type 2 diabetes.
        Diabetes. 2003; 52: 102-110
        • Ilkova H.
        • Glaser B.
        • Tunckale A.
        • Bagriacik N.
        • Cerasi E.
        Induction of long term glycemic control in newly diagnosed type 2 diabetic patients by transient insulin intensive treatment.
        Diabetes Care. 1997; 20: 1353-1356
        • Weng J.
        • Li Y.
        • Xu W.
        • Shi L.
        • Zhang Q.
        • Zhu D.
        • et al.
        Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial.
        Lancet. 2008; 371: 1753-1760
        • Del Guerra S.
        • Grupillo M.
        • Masini M.
        • Lupi R.
        • Bugliani M.
        • Torri S.
        • et al.
        Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose Diabetes Metab Res Rev. 2007; 23: 234-238
        • Musi N.
        • Goodyear L.J.
        Insulin resistance and improvements in signal transduction.
        Endocrine. 2006; 29: 73-80
        • Marchetti P.
        • Del Guerra S.
        • Marselli L.
        • Lupi R.
        • Masini M.
        • Pollera M.
        • et al.
        Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin.
        J Clin Endocrinol Metab. 2004; 89: 5535-5541
        • Zeender E.
        • Maedler K.
        • Bosco D.
        • Berney T.
        • Donath M.Y.
        • Halban P.A.
        Pioglitazone and sodium salicylate protect human beta cells against apoptosis and impaired function induced by glucose and interleukin 1 beta.
        J Clin Endocrinol Metab. 2004; 89: 5059-5066
        • Chiasson J.L.
        • Josse R.G.
        • Gomis R.
        • Hanefeld M.
        • Karasik A.
        • Laakso M.
        STOP-NIDDM Trial Research Group. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial.
        JAMA. 2003; 290: 486-494
        • Holst J.J.
        • Orskov C.
        The incretin approach for diabetes treatment modulation of if islet hormone release by GLP 1 agonism.
        Diabetes. 2004; 53: S197-S204
        • Farilla L.
        • Hui H.
        • Bertolotto C.
        • Kang E.
        • Bullotta A.
        • Di Mario U.
        • et al.
        Glucagon-like peptide 1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats.
        Endocrinology. 2002; 143: 4397-4408
        • Kahn S.E.
        • Haffner S.M.
        • Heise M.A.
        • Herman W.H.
        • Holman R.R.
        • Jones N.P.
        • et al.
        For the ADOPT Study group. Glycemic durability of rosiglitazone, metformin of glyburide monotherapy.
        N Engl J Med. 2006; 355: 2427-2443
        • Uusitupa M.I.
        • Niskanen L.K.
        • Sitonen O.
        • Voutilanein E.
        • Pyorala K.
        Ten year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 diabetic and non diabetic subjects.
        Diabetologia. 1993; 36: 1175-1184
        • Lehto S.
        • Ronnemaa T.
        • Haffner S.M.
        • Pyorala K.
        • Kallio V.
        • Laakso M.
        Dyslipidemia and hyperglycemia predict coronary heart disease events in middle aged patients with NIDDM.
        Diabetes. 1997; 46: 1354-1359
        • Lehto S.
        • Ronnemaa T.
        • Haffner S.M.
        • Pyorala K.
        • Kallio V.
        • Laakso M.
        Predictors of stroke in middle aged patients with non insulin dependent diabetes.
        Stroke. 1996; 27: 63-68
        • Standl E.
        • Balletshofer B.
        • Dahl B.
        • Weichenain B.
        • Stiegler H.
        • Hormann A.
        • et al.
        R Predictors of 10 year macrovascular and overall mortality in patients with NIDDM: the Munich General Practitioner Project.
        Diabetologia. 1996; 39: 1540-1545
        • UK Prospective Diabetes Study (UKPDS) Group
        Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes.
        Lancet. 1998; 352: 854-865
        • Nathan D.M.
        • Cleary P.A.
        • Backlund J.Y.
        • Genuth S.M.
        • Lachin J.M.
        • Orchard T.J.
        • et al.
        Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes.
        N Engl J Med. 2005; 353: 2643-2653
        • The Action to Control Cardiovascular Risk in Diabetes Study Group
        Effects of intensive glucose lowering in type 2 diabetes.
        N Engl J Med. 2008; 358: 2545-2559
        • The ADVANCE Collaborative Group
        Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes.
        N Engl J Med. 2005; 358: 2560-2572
        • Duckworth W.
        • Abraira C.
        • Moritz T.
        • Reda D.
        • Emanuele N.
        • Reaven P.D.
        • et al.
        Glucose control and vascular complications in veterans with type 2 diabetes.
        N Engl J Med. 2005; 360: 129-139
        • Holman R.R.
        • Paul S.K.
        • Bethel M.A.
        • Matthews D.R.
        • Neil H.A.
        10-year follow-up of intensive glucose control in type 2 diabetes.
        N Engl J Med. 2008; 359: 1577-1589
        • Klein R.
        Hyperglycemia and microvascular and macrovascular disease in diabetes.
        Diabetes Care. 1995; 18: 258-268
        • American Diabetes Association
        Position statement: diagnosis and classification of diabetes mellitus.
        Diabetes Care. 2009; 32: S62-S67
        • Lachin J.M.
        • Genuth S.
        • Nathan D.M.
        • Zinman B.
        • Rutledge B.N.
        • DCCT/EDIC Research Group
        Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial—revisited.
        Diabetes. 2008; 57: 995-1001
        • Diabetes Control and Complications Trial Research Group
        Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial.
        Ophthalmology. 1995; 102: 647-661
        • Clarke M.
        • Dodson P.M.
        PKC inhibition and diabetic microvascular complications.
        Best Pract Res Clin Endocrinol Metab. 2007; 21: 573-586
        • Noh H.
        • King G.L.
        The role of protein kinase C activation in diabetic nephropathy.
        Kidney Int Suppl. 2007; 106: S49-S53
        • Raptis A.E.
        • Viberti G.
        Pathogenesis of diabetic nephropathy.
        Exp Clin Endocrinol Diabetes. 2001; 109: S424-S437
        • Pugliese G.
        Do advanced glycation end products contribute to the development of long-term diabetic complications?.
        Nutr Metab Cardiovasc Dis. 2008; 18: 457-460
        • DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators
        Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial.
        Lancet. 2006; 368: 1096-1105
        • Rendell M.
        The role of sulphonylureas in the management of type 2 diabetes mellitus.
        Drugs. 2004; 64: 1339-1358
        • Mannucci E.
        • Rotella C.M.
        Future perspectives on glucagon-like peptide-1, diabetes and cardiovascular risk.
        Nutr Metab Cardiovasc Dis. 2008; 18: 639-645
        • Holst J.J.
        Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005.
        Diabetologia. 2006; 49: 253-260
        • Fujimori Y.
        • Katsuno K.
        • Nakashima I.
        • Ishikawa-Takemura Y.
        • Fujikura H.
        • Isaji M.
        Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models.
        J Pharmacol Exp Ther. 2008; 327: 268-276
        • Meng W.
        • Ellsworth B.A.
        • Nirschl A.A.
        • McCann P.J.
        • Patel M.
        • Girotra R.N.
        • et al.
        Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes.
        J Med Chem. 2008; 51: 1145-1149
        • Katsuno K.
        • Fujimori Y.
        • Takemura Y.
        • Hiratochi M.
        • Itoh F.
        • Komatsu Y.
        • et al.
        Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level.
        J Pharmacol Exp Ther. 2007; 320: 323-330